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1. INTRODUCTION 

Traffic accidents-flow-roadway geometric design relationships have been modeled for over 
30 years by traffic safety engineers and researchers to estimate and predict the traffic accident 
frequency or rate under different traffic flow and geometric design conditions. The coefficient 
of determination, or R2, has traditionally been used as a criterion to determine how well the 
developed models fit the observed accident data [ e.g., see Roy Jorgensen Associates, 1978, for 
many earlier studies; Council et al., 1980; Zegeer et al., 1987; Okamoto and Koshi, 1989; 
Zegeer et al., 1990; Joshua and Garber, 1990; Mohamedshah et al., 1992; and Belanger, 1994]. 
It is commonly believed that R2 is always bounded between O and 1 and the higher the R2 value, 
the better the fit; conversely, the lower the R2 value, the poorer the fit. 

Specifically, in developing accidents-flow-roadway design models, R2 has been used by 
traffic safety engineers and researchers to: 

1. Determine the quality and usability of a model: 

It is thought by many that, for any given data set, the R2 value of the developed accident 
model always has a lower bound of O and a upper bound of 1. Based on this common 
notion, a model with a R2 value of, say, 0. 7 or less is often considered as a poor model and 
not recommended for use. 

2. Select covariates (or explanatory variables) for inclusion in the model: 

Conceptually, for a given data set, we would like to have the R2 value of a model be 
reduced when an unworthy covariate, which explains very little variation of the accident 
frequencies among studied sites, is added to the model. This property of a goodness-of-fit 
measure would enable us to distinguish the unworthy covariates from the rest of the 
covariates. Statistically speaking, dropping the unworthy covariates from the model would 
enable us to reduce the uncertainty of our predictions when the model is used. The adjusted 
R2

, denoted by R2
, is a modified measure of R2 which allows the total number of degrees of 

freedom in the model to be reflected in R2
• In developing accident prediction models, 

R2has been used to decide which covariates should be included in a model. Typically, the 
model which includes a subset of all candidate covariates and gives the largest R.2 value is 
considered the best model. 

3. Make a decision as to whether it would be worthwhile to collect additional covariates: 

Based on the notion that the upper bound ofR2 for accident prediction models is always 1, 
many would use (l-R2

) as a measure of potential improvement that one might be able to 
achieve by collecting additional covariates. For example, if the current model has an R2 

value of 0.95, then based on (1-R2)=0.05, one might decide that collecting additional 
covariates will not pay off. On the other hand, if the current model has an R2 value of 0.45, 
based on (l-R2)=0.55, one may be led to think that there is still a lot ofroom for 
improvement and collecting additional covariates is likely to pay off. Of course, the 
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decision discussed here is purely based on statistical consideration. Engineering judgment 
usually plays an important role in the decision-making process as to whether the current 
model makes good engineering sense and which additional covariates should be collected if 
a data collection effort is to be made. 

4. Compare the relative quality of models from different studies: 

Many accident prediction models and their R2 values have been reported in the last 30 
years. When comparing the relative quality of these models, many traffic safety engineers 
and researchers tend to favor the models with high R2 values regardless of the fact that 
different localities, accident types, time periods, sample size, and covariates have been 
considered in different studies. 

The pitfalls of using R2 (or 1i2) to assess the quality of a model and to make the decisions 
and comparisons discussed above have been discussed in some statistical literature [e.g., Barrett, 
1974; Kvalseth, 1985; Scott and Wild, 1991; Willett and Singer, 1988; Cox and Wermuth, 1992; 
Anderson-Sprecher, 1994] and a recent safety research paper [Briide and Larsson, 1993]. To the 
best of this author's knowledge, no systematic demonstration of these pitfalls has been reported, 
especially for the applications in highway safety research. Also, many traffic safety engineers 
and researchers are not aware of these pitfalls and have continued to use R2 as a main goodness
of-fit measure for accident prediction models. 

To give an example of the pitfalls, Cox and Wennuth [1992] showed in the context of 
binary response regression models that, for an exemplary data distribution, the upper bound of 
the R 2 value for a perfect model could be much lower than 1. One important implication of their 
example is that a model with a low R2 value does not necessarily mean that the fit is a poor one. 
[Note that in this report a perfect model is referred to as a model that: (1) has specified a 
correct probability distribution for the dependent variable; (2) has chosen a correct functional 
form which describes the relationship between the expected number of accidents and associated 
covariates; (3) has included all necessary covariates; and (4) has correctly estimated each 
model parameter.} 

Another example of the pitfalls can be found in Briide and Larsson [1993] in which they 
showed that the R2 value of the Poisson regression models is dependent on the mean level of the 
dependent variable, i.e., the mean level of accident frequency. Essentially, it was shown that 
higher mean accident levels would result in higher R2 values regardless of the quality of the 
model. This is one of the reasons why the R 2 values of accident prediction models for urban 
areas were usually reported to be higher than those for rural areas. Also, this is a main reason 
why the R2 values of those models developed for data with high aggregation levels (with respect, 
e.g., to accident type, the length-of-time periods, or the length-of-road sections) were reported to 
be higher than those models developed for disaggregate data. Because traffic accident events are 
known to follow some Poisson type of distributions, this example suggests that, in general, we 
would not be able to compare the quality of models from different studies using R2 values if 
these studies were perfonned for different localities, accident types, or length-of-time periods. 
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OBJECTIVES 

The objective of this study was threefold. The main objective was to demonstrate to traffic 
safety engineers and researchers the potential pitfalls of using R 2 

( or 1i1) to determine the 
goodness-of-fit of accident prediction models. This objective was accomplished through 
computer simulations of previously used accident prediction models, including normal linear 
regression, lognormal regression, Poisson regression, and negative binomial regression models. 
The last two types of regression models are commonly used in recent studies to describe traffic 
accidents-flow-roadway geometric design relationships. 

In the last 20 years, an alternative model selection criterion called the Akaike Information 
Criterion (AIC) has been developed by statisticians [see e.g., Bozdogan, 1987]. The capability of 
this criterion to select the correct models has traditionally been shown in a linear regression or 
time series context in statistical literature [ e.g., Hurvich and Tsai, 1989] and just recently in a 
logistic regression context [Hurvich and Tsai, 1994]. Also, this criterion has been coded as one 
of the outputs in some of the new statistical software packages. However, few traffic safety 
engineers and researchers are aware of the development of this criterion. The second objective of 
this study was, therefore, to bring the latest development of AIC to the attention of traffic safety 
engineers and researchers. This objective was achieved through some illustrations of the power 
of AIC-based criteria in model selection. Again, the illustrations were carried out using 
computer simulations. It was hoped that through the simulation studies the strengths and 
limitations of AIC-based criteria in evaluating the goodness-of-fit of accident prediction models 
could become clearer to traffic safety engineers and researchers. In addition to AIC, other 
criteria such as likelihood-ratio based criterion and Pearson's X 2 statistics were also considered in 
the illustration. 

Based on lessons learned from the simulations above, the third objective was to suggest the 
type of models that is appropriate for the prediction of run-off-the-road accidents, and to discuss 
the merits and shortcomings of the model as applies to the prediction of run-off-the-road 
accidents and vehicle roadside encroachments that may lead to run-off-the-road accidents. This 
study relates to one of the major tasks in developing accident prediction models, which is to 
determine an appropriate functional form that describes the accidents-flow-roadway design 
relationship. 

SCOPE OF WORK 

The focus of this study was on two types of statistics: R2 and AIC-based criteria. There 
are, however, many statistical tests and criteria other than R2 and AIC that are available for 
testing the quality of a model. For example, the t-statistic of an estimated parameter can be used 
to assess the significance of the association between a covariate and traffic accidents, and some 
score test statistics developed in recent statistical literature can be used to decide the adequacy of 
Poisson assumption [see e.g., Miaou et al., 1993]. All these tests and criteria, when appropriate, 
can be and should be used to better determine the quality of accident prediction models. 
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Because the resources available for this study were limited, the research performed was 
intended to be exploratory and illustrative in nature. It is hoped, however, that this study could 
shed some light on future research needs in accident prediction modeling and more indepth 
follow-on studies will be conducted in the near future. 

REPORT ORGANIZATION 

Chapter 2 gives a review of the state of the development of accident prediction models in 
describing traffic accidents-flow-roadway geometric design relationships. Chapter 3 discusses 
the concept of R2 and illustrates the pitfalls of using the R 2 values to make the decisions and 
comparisons described earlier. These pitfalls are illustrated using computer simulations. Chapter 
4 introduces AIC and other criteria, such as the likelihood-ratio based criterion and Pearson's X 2 

statistics. The capability and limitations of these criteria to select the correct model is 
demonstrated through various computer simulations. Chapter 5 examines the property of three· 
possible alternative measures that have the potential of overcoming some of the limitations of 
R2 and AIC. Chapter 6 investigates the relationship between two modeling approaches that have 
traditionally been used to evaluate roadside safety and discusses the merits and shortcomings of 
the models as applies to the prediction of run-off-the-road accidents and vehicle roadside 
encroachments that may lead to run-off-the-road accidents. Run-off-the-road accidents and 
roadway data for rural two-lane undivided roads from a roadway cross-section design data base 
[Hummer, 1986], administered by the Federal Highway Administration (FHWA) and the 
Transportation Research Board (TRB), were used to facilitate the discussion. Chapter 7 
concludes this study by providing some suggestive directions for future research. 
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2. ACCIDENT PREDICTION MODELS 

This chapter gives a review of the current state of the development of accident prediction 
models in describing traffic accidents-flow-roadway geometric design (or simply accidents-flow
roadway design) relationships. The purpose of this review is to set the stage for the discussion of 
the concept ofR2 and AIC and their simulation studies in the next few chapters. First, the 
concept of variation in accident frequency is introduced. Second, major statistical and 
engineering considerations in developing accident prediction models are discussed. Third, 
commonly used accident prediction models, as presented in recent research papers, are 
introduced. Fourth, potential areas where accident prediction models may be misspecified are 
discussed. Finally, some additional observations on the current status of the development of 
accident prediction models for roadway planning and design are offered. 

For ease of exposition, in the following discussion, "accidents" refers to vehicle accidents 
of a particular vehicle and severity type, "accident frequency" refers to either the number of 
accidents or the number of vehicles involved in accidents (depending on interest), and "site" 
refers to a road section (including both mainline and roadside), an intersection, or a ramp. In 
addition, for the interest of this study, "accident prediction models" refers only to those statistical 
models that describe accidents-flow-roadway geometric design relationships. 

VARIATION OF ACCIDENT FREQUENCY 

Vehicle accidents are complex events involving the interactions of five major factors: the 
drivers, the traffic, the road, the vehicles, and the environment (e.g., weather and lighting 
conditions). Developing accident prediction models is a means of summarizing these 
complicated interactive effects based on information contained in the data, as well as our 
engineering judgment and analytical assumptions about the accident process. Essentially, 
through modeling, we attempt to explain why accident frequency is different from one site to 
another (the so-called between-site variation) and from one time interval to another (the so-called 
between-time variation). It is believed that a significant part of the variations in accident 
frequency is due to the differences of these five major factors among sites and time intervals. 
Conceptually, once the relationships between the variation of accident frequency and these five 
factors are established through models, one can use the models to devise cost-effective means or 
regulatory policies to affect or change some of these five factors in such a way that accidents will 
be reduced in the long run. 

Figure 1 illustrates the concept of variation of accident frequency. This concept is helpful 
in understanding the construction of R2 and in interpreting R 2 values for real-world problems. 
Figure 1 (a) shows that the total variation of accident frequency, Y, can be decomposed into two 
components: systematic variation and random variation (or, mathematically, the variation of 
f(X,Z, U; /J) and the variation of e, respectively). The between-site and between-time variations 
discussed above are part of the systematic variation. Conceptually, we can think of systematic 
variation as the variation of long-term means among different sites and time intervals. 
Hypothetically speaking, if we can repeat the accident process over and over again while keeping 
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Figure 1. Total explained, unexplained, and random variations of accident frequencies among sites and time intervals. 



the five major factors the same for each site and time interval, we can observe accident 
frequency for each site and time interval over and over again. This replication would then allow 
us to compute the long-term mean value of accident frequency for each site and time interval. 
The variation of these mean values among sites and time intervals is the systematic variation. 
The variation of accident frequencies observed from various replications about the "long-term 
mean" at each site and time interval is the random variation (which can also be called within
site/within-time variation). Of course, this replication cannot be conducted in real-world and 
these long-term means and within-site/within-time variation cannot really be observed and are 
traditionally estimated using the regression analysis. 

The random variation (or within-site/within-time variation) can be thought ofas the 
variation that is beyond our explanation. Statistically, it is believed that the random variation 
follows certain probability law and can be characterized by a probability (mass) function. In 
traffic accident modeling, through analytical argument and analysis of accident data, it is 
commonly believed that this random variation can be well characterized by a Poisson probability 
mass function. Note that the analytical argument can be found in most of the statistics textbooks 
where the derivation of the Poisson distribution from the binomial distribution is discussed. 

The systematic variation in figure 1 (a) is further decomposed into three components: (1) 
explained variation by variable X; (2) unexplained but statistically significant variation caused by 
omitted or missing variable Z; and (3) unexplained and statistically insignificant variation caused 
by variable U. This decomposition is a recognition of the reality of accident modeling where we 
usually do not have all the variables or information that we need on the five major factors to 
explain the variation of accident frequencies among sites and time intervals. For example, in 
developing accidents-flow-roadway models, for each investigated site we may be able to collect 
some traffic and vehicle variables, such as traffic volume, truck-car mix, turning movements (for 
intersections), and roadway geometric design variables for mainlines and roadside, such as lane 
width, horizontal curvature, vertical grade, shoulder width and type, median width and type, 
sideslope, and clear roadside recovery distance. Often, these data are available over several time 
intervals (typically recorded by year). It is unlikely, however, that one will be able to know 
whether there are more drivers that are accident-prone or careless on some of the sites than other 
sites (except in some cases where we may have data on the locations of, e.g., some night clubs 
that serve alcohol). It is also unlikely that we will be able to know whether vehicles of some 
sites are better equipped with safety equipments than vehicles of other sites. Similarly, there are 
many other human factors that are difficult to quantify by site, e.g., the effect of law enforcement 
level, the familiarity of the drivers with the sites, driver's age distribution, etc. Environmental 
conditions to some extent can be assumed to be the same at different sites for each time interval 
if the area under consideration is not too wide. (Otherwise, area dummy variables can be used to 
capture the area variations or effects.) However, these environmental conditions can vary 
significantly from one time interval to another. For example, the number of snow storms and 
rainy days can vary significantly from one year to another. Generally speaking, even though 
data availability varies from study to study, in developing accident prediction models, major 
traffic and roadway variables and some of the environmental variables are available (the X's and 
U's) and the driver and vehicle variables which are known to be important variables are largely 
unavailable (the omitted variables Z's). 
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What follows is an illustration of the concept of variation using a conventional normal 
linear regression model. It should be emphasized that normal linear regression models have been 
shown to be inadequate for modeling accident-flow-roadway design relationships [see e.g., 
Miaou and Lum, 1993]. Here it is used purely for illustration purpose. As will be discussed 
later, accident prediction models are discrete, non-normal, nonlinear, and interactive in nature. 

Let's consider a process which is generated from a normal linear regression model as 
follows: 

(1) 

where Y, are dependent variables; x0 , xi2 , ... xi6 are observed values of covariates ( or explanatory 
variables) Xii. j= 2, 3, .. . , 6, respectively; ei are independent and identically distributed ( iid) 
normal random variable with mean O and constant variance o2

; and Ws are constant regression 
parameters. Collectively, x Y' j=J,2, ... ,6, will be denoted by x; and X !i• J=2,3, ... ,6, denoted by 
X,. Other common assumptions associated with linear regression models, such as X; 's are 
measured without errors, e i's do not depend on x,, and x ;'s do not collinear with each another, are 
also assumed for the model in Eq. (1 ). For ease of exposition, let's further simplify the model as 
follows: (1) set all pj ,j = 1,2,3, .. ,6, equal to 1, denoted simply by p=l; (2) set the first 
covariate x,1= 1 (i.e., X ;1 is a dummy variable equal to 1 and p 1 is an intercept); and (3) assume 
that Xy, j=2,3, ... ,6, are independent normal random variables, each of which has zero mean and 
constant variance of 1, denoted as X,1 ~ iid N(O,l) forj=2,3,4,5,6 or collectively, without 
confusion, simply X; ~ iid N(O, 1). Under these conditions, the model can now be expressed in a 
simpler form as: 

(2) 

For this illustration, the variance of a random variable is used to measure its variation. As 
will be seen later, variance is the underlying measure of variation in R2

• Note that conditional 
and unconditional expectation and variance of random variables will be used quite often to 
compute the R2 values in this illustration and other illustrations in the next chapter. For 
reference on the definition and statistical properties of conditional and unconditional expectation 
and variance, the readers are referred to basic statistics and probability textbooks, such as Ross 
[1989] and Rohatgi [1976]. For example, one important relationship between conditional and 
unconditional variance that has been shown in many textbooks is: the unconditional variance of 
Y, can be broken down into two components, Var[YJ = E[Var[Y, IX;]]+ Var[E[Y, IX;]]. When 
X; represents all covariates necessary to explain Y;, then the first component, E[Var[Y, IX;]}, is 
the random variance, i.e., the variance that is beyond the explanation of covariates, and the 
second component, Var[E[Y; IX-,}], is the systematic variance. 

For the particular model in Eq. (2), the conditional mean of Y, given the observed values x; 
is E{Y1 Ix;}= E[l+x,2+ x,3+ X;~+ x,5+ X;6 +cJ = l+x,2+ x,3+ x 14+ x,5+ X;6, where the 

8 



expectation is taken over E;- The conditional variance of Y; given the observed values x, is Var[Y, 
Ix;]= E[( Y; - E[Y; I xJ/lx J = E[ E/lxJ = o2

• That is, the conditional mean of Y, varies with 
the observed values x's, while the conditional variance is a fixed constant o2. 

The unconditional mean of Y;, denoted by E[Y J, is equal to l. That is, E[Y J = E[E[Y; IX J] 
= E[E{l+X;2 + X;3 +Xi4+ X,5 +X,6+E;IX J} = l, where the expectation is first taken over E; and 
then over all X, 's. Using the conditional-unconditional variance relationship described above, 
one can show that the unconditional variance of Y;, denoted by Var[Y;], in Eq. (2) is composed of 
a random variance o2 and a systematic variance caused by the variation of X through the long
term meanf(X;,"/3=1) which is equal to J+X,2+X,3+X,4+X,5+X,6 • To elaborate, the systematic 
variance is computed as: Var[f(X;; /3= 1 )] = Var[E[Y,IXJ] = Var[l +X;2+ X;3+X;4+ X;5 +X;6 } = 5, 
where the variance is taken over all X;'s; while the random variance is computed as: 
E[Var[Y;IXJ] = E[ c/'IJ{J= cl. 

In Eq. (2), if all X's are available (no omitted variables) and all parameters correctly 
estimated with no sampling variations (i.e., the estimated parameters P are l with no 
uncertainty), then the total explained variance of the model is the systematic variance which is 
equal to 5. Now, consider a situation in Eq. (2) where there is one omitted variable. Without 
loss of generality, let's say X,6 is not available for developing the model, i.e., Z=X,6• The model 
under consideration is now: 

(3) 

where ei is the sum of X,6 and random error E; which are now indistinguishable from each other. 
Again, assume that all parameters of the available covariates are correctly estimated with no 
uncertainty. The total explained variance by available Xis now Var[E[Y;IX;2,X;3,X;4,X;5}] = Var[ 
l+X;2 +X;3+X;4+X;J = 4. In the same token, if there are two, three, four, and five omitted 
variables, the total explained variances become 3, 2, 1, and 0, respectively. 

Let's now adopt the traditional definitions ofR2 as follows: 

R 2 = Total Explained Variance of Y by Available X 
Total Unconditional Variance of Y 

Total Unexplained Variance of Y 1-----~------~-
Total unconditional Variance of Y 

(4) 

Under Eq. (2), for a perfect model, which has correct probability function (i.e., normal 
probability density function), correct functional form, no omitted variable, and all parameters 
correctly estimated with no uncertainty, we have R2 =5/(5+o2

). Furthermore, when o2=1, 5, and 
20, R2 values for the perfect model are 5/6, 1/2, and 1/5, respectively. This means that for a 
perfect model the best R2 value that can be achieved is always less than 1 unless there is no 
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random error (i.e., o2 = 0). Figure 2 gives an illustration of different R2 values under Eq. (2) 
with different numbers of omitted variables and o2 values. Again, it is assumed in all cases that 
all parameters of the available covariates are correctly estimated. One observation that can be 
made from this figure is that the R2 value increases linearly as the covariate is added to the model 
one at a time. As will be seen later, this is not the case in nonlinear models such as the typical 
Poisson and negative binomial regression models. 

The normal linear regression illustration above ignores the effect of sampling variations ( or 
sampling errors) caused by the use of finite samples. In practice, the number of data available for 
developing a model is always finite. Under a finite sample, variable U may exist. In addition, 
even if we could specify probability function and functional form of a long-term mean correctly 
and include all the necessary covariates, it is not possible to estimate parameters precisely. The 
only assurance the analysts have when using the so-called consistent estimators, such as the 
maximum likelihood (ML) estimator, is that as sample size increases, the uncertainty of the 
estimated parameters decreases. Chapter 3 will illustrate the effect of sampling errors on R2 

values and extend the illustration above to more commonly used accident prediction models that 
are non-normal in probability function and nonlinear in functional form. Note that the role of 
statistically insignificant variables U's in developing accident prediction models will be 
discussed in the next section. 

MAJOR STATISTICAL AND ENGINEERING CONSIDERATIONS 

In developing accident prediction models, there are five main tasks that require both 
statistical and engineering considerations: (l) find a good probability (mass) function, P(.), to 
describe the random variation of e; (2) determine an appropriate functional form and 
parameterization, i.e.,/(.; f}), to describe the effects of variables X's and U's on the long-term 
means; (3) select the right variables to include inf(. ; f}), i.e., to find appropriate X'.s and 
eliminate U's; (4) estimate the regression parameters (or coefficients) P in/(. ; /3) and obtain 
good statistical inferences for the estimated parameters based on available data; and (5) assess 
the quality of the model, judge whether the model make good engineering sense, decide whether 
the developed model meets the planning and design requirements, and identify cost-effective 
ways to improve the model. Note that even though the role of sample size, n, is not specifically 
indicated in these tasks, it is crucial in every aspect of the modeling process. Also, in 
accomplishing these five tasks, the potential impact of omitted variables Z's should always be 
kept in mind. Although data quality issues, especially underreporting and misrecording of 
accidents, are out of the scope of this study, they are as important as developing models. 

In this report, accident prediction models refer to the totality of the model which includes 
the probability function, P(.), the functional form and regression parameters, f(. ,· f}), and the 
variables, X'.s, which are selected for inclusion inf(. ; f}). 

10 



...... ...... 

True Model: Yi =l + xi2+xi3+xi4+x isf-xi6+ € i 

Xi2 , Xi3 , Xj4, Xj5 , X i6 ~ iid N(0,1) and€ i ~ iid N(O,cr2 ) 

1 

0.8 

0.6 

0.4 

0.2 

oc 
0 1 2 3 4 5 

Number of Covariates Included (Excluding the Intercept) 

Figure 2. i values of a simple normal linear regression model at three variance levels. 



The purpose of this section is to review the current status of research and thinking in 
accident prediction modeling with respect to the five tasks mentioned above. More detailed 
mathematical description of some of these tasks will be provided in the next section. The order 
of these five tasks is not particularly important because in practice some tasks can very well be 
conducted concurrently or iteratively depending on the state of knowledge of the problem and of 
studied sites. 

Task 1. Find a good probability (mass) function, P(), to describe the random variation of E. 

In the last decade or so, there has been a steady realization in accident prediction modeling 
research that the conventional normal or lognormal regression models simply do not have the 
necessary statistical property to adequately describe the vehicle accident events on the road. 
Better choices of P(.) are the Poisson and negative binomial (NB) distributions [Maycock and 
Hall, 1984; Jovanis and Chang, 1986; Joshua and Garber, 1990; Miaou and Lum, 1993; and 
Miaou et al., 1993]. It is also a common view among statisticians, econometricians, and some 
safety researchers in analyzing discrete rare events that ifwe are able to include all the necessary 
variables to explain the systematic variation of dependent variable Y, then the Poisson 
distribution will be the best choice [Lawless, 1987; Cameron and Trivedi, 1990; and Miaou et al., 
1992]. (Note that the underlying assumption of the Poisson distribution is that the variance of 
the data is equal to the mean.) In cases where we have omitted variables Z's, the use of Poisson 
model causes a phenomenon called overdispersion, meaning that the variance of the accident 
data is greater than the Poisson model indicated. Furthermore, if the exponent of Z's, i.e., 
exp(Z), follows a distribution that can be represented by a gamma distribution, then the NB 
model is a good candidate probability function for Y given available X's. More detailed 
mathematical description of the Poisson and NB regression models will be given in the next 
section. 

The discussion of the choice of P(.) above may be oversimplified both statistically and 
conceptually. Nevertheless, it points out the importance of considering one critical problem in 
accident prediction modeling, i.e., the omitted variable problem. As mentioned earlier, driver 
and vehicle variables are largely unavailable in developing accident prediction models. It has 
been suggested that the omission of driver variables is perhaps one of the main sources of 
overdispersion in accident prediction models [Miaou et al., 1993; Miaou and Lum, 1993]. In 
view of this inevitable omitted variable problem, the NB distribution seems to be a favored 
choice over the Poisson distribution. However, as will be discussed later, the omitted variable 
problem is by no means the only source of overdispersion in accident prediction models. Also, 
one should know that there is more than one NB probability function that the analysts can choose 
from, each of which implies a specific mean-variance relationship. The most commonly used 
NB distribution is the one with a quadratic variance function, i.e., the variance is a quadratic 
function of the mean. 

The aggregation level used to define a site, e.g., the length ofroad sections or radius of 
intersections, and the associated length-of-time intervals, also play some role in the choice of 
P(.). Ideally, each site should be homogeneous in the sense that its attributes regarding the five 
major factors discussed earlier can be uniquely and clearly defined. In practice, this is, however, 
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unrealistic because too many attributes need to be considered and as a result it is almost 
impossible to find a sufficient number of sites that are totally homogeneous in all considered 
attributes. A good example would be the attributes associated with roadside hazards that vary 
considerably from site to site by type, shape, size, and their positions from the travelway. 

As an alternative, it has been suggested that major traffic and roadway design attributes of 
each site should be as homogeneous as possible [e.g., Miaou et al., 1993; Miaou and Lum, 1993]. 
For example, in studying accidents on road sections, major attributes for each road section, such 
as average annual daily traffic (AADT), percent trucks, access control, number of lanes, lane 
width, horizontal curvature, vertical grade, shoulder width, median type and width, roadside clear 
recovery distance (from shoulders), should be as homogeneous as possible. This suggestion was 
based on both theoretical and roadway design considerations. On the theoretical consideration, 
the higher the level of aggregation, the less the site can be considered homogeneous and the 
further the accident frequency of each site deviates from the Poisson distribution. Especially, the 
conditional variance of accident frequencies will be exceeding the conditional mean. Now, let's 
take a highly aggregate and nonhomogeneous site for example. Basically, one can argue that the 
accident frequency at the site can be considered as the sum of the accident frequency at 
numerous homogeneous sub-sites within the site, and, therefore, by the Central Limit Theorem, 
the accident frequency at the site is about normally distributed. On the roadway design 
consideration, as the level of aggregation increases, the effects of many roadway design elements 
become diluted and the developed model will be less useful for engineering design [Miaou and 
Lum, 1993]. Obviously, highly disaggregate data are too expensive to collect, while highly 
aggregate data have almost no value for engineering design. Some engineering judgments seem 
inevitable in setting the priorities of the engineering design questions that need to be addressed 
and in developing criteria for use to determine whether a site can be considered as relatively 
homogeneous. 

Task 2: Determine an appropriate functional form and parameterization, i.e.,f(.; P), to 
describe the effects of variables X's and U's on the long-term means. 

The function/(. ; P) represents the long-term mean and is a function of the five major 
factors discussed earlier. For simplicity, it will now be called the mean function of the model. 
To the best of this author's knowledge, there is no comprehensive statistical study aimed at 
identifying appropriate mean function/(. ; P) in the area of accident prediction modeling. 
However, there seems to be a consensus among traffic safety engineers and researchers that the 
effects of X's on accident frequency Y are interactive in nature [ e.g., Maycock and Hall, 1984; 
Miaou and Lum, 1993]. This suggests that some sort of multiplicative functional forms should 
be used to describe the effects. Another important consideration about the choice off(. ; p) is 
that it always has to be nonnegative. A natural candidate function for describing the interactive 
effects which at the same time ensures that the function values are always nonnegative, is the 
exponential function. It has been widely used by statisticians and econometricians and found to 
be very flexible in fitting different types of count data [ e.g., Cox and Lewis, 1966; Cameron and 
Trivedi, 1986]. In a study by Miaou and Lum [1993], they compared the performance of two 
multiplicative functions, one of which is the exponential function, for truck accidents under the 
Poisson model and found that the exponential form was indeed a better choice. 

13 



The selection ofright variables to include inf(. ; /3), i.e., to identify appropriate X's and 
eliminate U's, requires both engineering judgment and statistical consideration. The initial 
variable selection is always based on engineering judgment. Once the candidate variables are 
selected, the next step is to derive a theory (again using engineering judgment and knowledge) as 
to how each variable is likely to affect accident frequencies and what the relative importance of 
these variables are. This exercise gives the analysts some idea of the expected (algebraic) signs 
of each parameter, p, in the model, and their relative order of magnitudes. Instead of using the 
engineering judgment, some have relied on sample correlation, r,y, between each individual 
variable X and Yto get some idea of the association [see e.g., Roy Jorgensen Associates, 1978]. 
It should be emphasized, however, that sample correlation is good only for measuring a close-to
linear relationship and is computed one variable at a time. Since many studies have shown that 
the effects of some variables are highly nonlinear, e.g., AADT, and are highly interactive, sample 
correlation could be misleading and should be used with extreme caution. 

It is worth mentioning that studies to determine the mean function from engineering 
viewpoints do exist. These studies typically focused on the use of traffic flow theory, geometry, 
vehicle dynamics, and probability theory to describe traffic conditions and events that may lead 
to an accident, and very little attention was given to driver behavior. For example, for roadway 
mainline accidents on road sections, intersections, and interchanges, Council et al. [1983] 
conducted a very comprehensive study under the title of Exposure Measures for Evaluating 
Highway Safety Issues. For roadside accidents, there has been a constant effort attempting to 
refine the mean function on the basis of engineering judgment or knowledge. These studies used 
a series of conditional probabilities to describe the sequence of events resulting in a roadside 
accident. An example sequence of events would be (I) an errant vehicle leaves the traveled 
way and encroaches on the shoulder; (2) the location of encroachment is such that the path of 
travel is directed towards a potentially hazardous object; (3) the hazardous object is sufficiently 
close to the travel lanes that control is not regained before encounter or collision between vehicle 
and object; and (4) the collision is sufficiently severe enough to result in an accident. These 
types of models have traditionally been called roadside encroachment models [Glennon, 1974; 
TRB, 1987; Mak and Sicking, 1992; and Daily et al., 1994]. Generally speaking, these types of 
engineering studies have ignored the statistical side of the problem and paid very little attention 
to the other tasks described in this section. In addition, for many years these studies have been 
criticized as being full of wishful assumptions and lack supporting data. Roadside 
encroachment models are discussed in more detail in chapter 6. 

Task 3: Select the right variables to include inf(. ; /3), i.e., to find appropriate X's and 
eliminate U's . . 

Given a set of candidate variables, several statistical criteria have been used to select 
variables, including 1? and AIC. Typically, the model which contains a particular subset of 
candidate variables that has the highest R2 value or lowest AIC value is considered the best 
model. However, it happens quite often that the analysts may find several models to be equally 
good (i.e., their R2 and AIC values are very close). In such cases, all these models need to be 
selected and subjected to further study, including case analysis, questions of interpretability, tests 
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of prediction capability, and so on [Weisberg, 1985]. In addition, as suggested in Miaou et al. 
[1992), it is important to check whether all estimated parameters of selected models have. 
expected signs and hight-statistics. 

For problems with only a few candidate variables, say eight or less, it is not difficult to 
consider all possible models, each of which contains a subset of candidate variables. For 
example, for a problem with eight candidate variables, there are 28=256 possible subset models 
that need to be estimated and compared, which is computationally quite manageable even with a 
486-based personal computer. Now, for a problem with 15 candidate variables, which is not 
uncommon in accident studies, there are 215 = 32,768 possible subset models that need to be 
estimated and examined which is almost unmanageable even with today's powerful workstations. 
[Note that because accident prediction models have mean functions f(. ; P) that are nonlinear 
and the probability functions P() that are non-normal, the estimation of model parameters 
require extensive iterative searching procedures.] 

At present, there are several methods that are available in most of the statistical software for 
alleviating such a massive computational problem. These methods include forward selection, 
backward elimination, and stepwise procedure [see e.g., Weisberg, 1985). Collectively, these 
methods are called stepwise regressions. The statistical criterion used in stepwise regressions to 
add or delete variables is either t- or F-statistic. Although stepwise regressions are widely used 
in accident studies, they should be used with caution. The reason is that these methods do not 
check whether the parameters in the model have the expected signs and whether some 
combinations of candidate variables make good engineering sense. For example, in developing 
accident prediction models for trucks, AADT and percent-truck should always be included 
together to account for truck exposure. It does not make sense to keep only one of them and 
leave the other one out of the model. Also, several problems regarding stepwise regressions were 
pointed out by Weisberg [1985]: (1) the model selected in stepwise fashion need not optimize 
any reasonable criterion function for choosing a model; (2) the ordering of candidate variables 
(or predictors) is an artifact of the method and need not reflect relationships of substantive 
interest; and (3) stepwise regression may seriously overstate the significance of the results. 

Those variables that are considered statistically insignificant and eliminated from the final 
model, i.e., the U's, do not necessarily have no effect on accident frequency. Oftentimes, 
variables are excluded from the model simply because they do not have enough variation in the 
available data, and at the same time the sample size is small. To use an extreme example, if a 
variable (say lane width) has no variation in the data (say that all are 3.66 min lane width), then 
regardless of the sample size there is no way that any statistical model could be developed from 
the data to describe the effect of such variable on accident frequency [see e.g., Miaou et al., 
1993 ]. As in many problems, if a point is reached at which it is necessary to quantify the effect 
of such variables with a limited range of variations, then two approaches may be taken: ( 1) if 
feasible, collect additional data with a wider range of variations in these variables and redevelop 
the model; and (2) use results from other studies with similar road environment. The second 
approach requires a need to combine two or more models developed for different data sets. 
Engineers' discretion under approach two is essential. Before developing any models, it is 
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always helpful to generate simple descriptive statistics, including the coefficient of variation, to 
identify variables that either have no variation or may have very limited variations. 

In sum, there is no good way of substituting statistical methods for good engineering 
judgment. Statistical methods are analytical tools and should be used as such to deepen our 
understanding of the problem, enhance our engineering knowledge, and help us make more 
intelligent decisions. 

Task 4: Estimate the regression parameters (or coefficient) fl in f(. ; fl) and obtain good 
statistical inferences for the estimated parameters based on available data. 

Once the probability function P(.) and mean function f(. ; fl) are determined and the data 
of candidate variables (X's and U's) are collected and checked, the next step is to estimate the 
parameters p in the model. Because accident prediction models are Poisson-based and nonlinear 
models, the estimation methods are all recursive types of estimators, e.g., iteratively reweighted 
least squares (IRLS) method, ML method, and maximum quasi-likelihood (MQL) method. The 
derivation of statistical inferences, such as t-statistics of estimated parameters, requires the use of 
asymptotic theory [ e.g., Cramer, 1989]. This task is, in general, quite statistically involved. 
Some discussion on parameter estimation for lognormal, Poisson, and NB regression models will 
be given in the next section. Here are some useful references: Myers [1990], Cramer [1989], 
and Mccullagh and Nelder [1983]. One of the key issues that need to be addressed in this task is 
to develop an efficient and numerical stable algorithm to estimate model parameters and produce 
reliable statistical inferences. The quality of the estimates and statistical inferences, however, 
depends heavily on how good the selected probability function P(.) and mean function f(. ; /3) 
represents the true model and, of course, the quality of data. 

Task 5: Assess the quality of the model,judge whether the model make good engineering 
sense, decide whether the developed model meets the planning and design 
requirements, and identify cost-effective ways to improve the model. 

As discussed earlier, in assessing the quality of a model, it is important to check whether all 
estimated parameters of the model have expected signs. Further investigations are required if the 
estimated parameters of some covariates do not have expected signs. It is also important to 
determine if all the estimated parameters have hight-statistics ( e.g., > 2.0, when sample size is 
large). This check allows the analysts to assess whether these parameters are well determined 
and whether there is a need to increase sample size or to collect additional data for increasing the 
range of variations of some covariates . 

Another question that needs to be addressed is the overall quality of the developed model. 
For example, How close is the developed model from the true model? Obviously, the closer the 
developed model from the true model, the more confident the analysts are of using the developed 
model in engineering practice. Two other related questions mentioned in chapter 1 are Do we 
need to collect additional variables? and Would it be cost-effective to collect additional 
variables? As mentioned earlier, many traffic safety engineers and researchers have been using 
the closeness ofR2 value to I as a yardstick to address these questions. The next chapter will 
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show that R2 is not an appropriate measure to address these questions for accident prediction 
models and will examine three alternative criteria to address these questions in chapter S. 

There are three basic concepts involved when examining these alternative criteria: (1) [0,1] 
bound concept; (2) proportional increase concept; and (3) invariant with respect to the mean 
concept. Basically, [O, 1] bound concept says that the analysts would like to have a value of O if 
no covariate ( other than the intercept term) is included in the model, and a value of 1 if all 
necessary covariates are included. Proportional increase concept says that if all covariates are 
independent and equally important, then when the analysts select and add these covariates to the 
model one at a time, the increase in value should be the same for each covariate regardless of 
their order of selection. Invariant with respect to the mean concept says that the value of the 
criterion will not change by simply increasing or decreasing the value of the intercept term in the 
model. 

Finally, all developed models should be reviewed by traffic and roadway design engineers 
and subjective to case analysis, questions of interpretability, tests of prediction capability, and so 
on. 

ACCIDENT PREDICTION MODELS USED IN RECENT STUDIES 

Significant progress has been made in the development of accident prediction models over 
the last decade, largely due to the use of the so-called Generalized Linear Models [McCullagh 
and Nelder, 1983]. The most promising models have been the Poisson and NB regression 
models [ e.g., Maycock and Hall, 1984; and Miaou, 1994]. These models have been developed 
for planning, preliminary design, and evaluation purposes. 

In this section, three types of accident prediction models that have been used in recent 
studies are presented: lognormal regression, Poisson regression, and NB regression models. The 
lognormal regression model has been shown to be inadequate for developing accidents-flow
roadway design relationships and is presented only for illustration and comparison purposes 
[Miaou and Lum, 1993]. 

The presentation below uses road sections as examples. The same models with slight 
modifications can be used for intersections and ramps [see e.g., Maycock and Hall, I 984]. The 
models described in this section can be applied to any roadway class, vehicle configuration, and 
accident severity type of interest. For ease of exposition, the following presentation focuses on 
accidents of all severity types involving all types of vehicles on a particular roadway class. 

Consider a set of n road sections of a particular roadway type, say, rural Interstate. Let Y; 
be a random variable representing the number of vehicle accidents on road section i during a 
period of, say, I year, where i=l,2, ... ,n. (The same road section in different sample periods are 
considered as separate road sections.) Further, the actual observation of Y; during the period is 
denoted as y,, where y;=0,1,2,3, ... and i=l,2, ... ,n. Let the amount of vehicle travel (or vehicle 
exposure) during the sample year on this road section be V;. The vehicle travel, v,, is usually 
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computed as 365xAADT;xe;, where AADT; is the number of vehicles and I; is the length (in 
miles or kilometers) of road section i. [If only accidents involving trucks are of interest, then a 
typical exposure measure is truck miles, computed as 365 xAADT;x(T¾/1 00)xe;, where T¾; is 
the average percentage of trucks in the traffic stream (or percent trucks) on road section i, e.g., 
15, and AADT;x(T¾; /100) is the truck AADT ofroad section i during the observed year.] 
Associated with each road section i, there is a k x 1 covariate vector, X;, describing its geometric 
characteristics, traffic conditions, and other relevant attributes. The transpose of the covariate 
vector is denoted by x: = (xii, x,2, ... , X;k)- Without loss of generality, let the first covariate Xu be a 
dummy variable equal to one for all i (i.e., xil=l). Some of the covariates can be 0,1 dummy 
variables, indicating the presence or absence of a condition. For example, to assess the effects of 
terrain on vehicle accidents, a dummy variable is set equal to zero if a road section is located in 
level terrain and set equal to 1 if located in rolling or mountainous terrain. 

In this presentation, all three models are formulated under the assumption that (I) vehicle 
miles data and other covariates are free from measurement and recording errors; and (2) the 
occurrences of vehicle accidents on different road sections are independent. Many of the 
materials presented in this section are adopted directly from the papers by Miaou and Lwn 
(1993] and Miaou [1994]. The detailed discussion of each model now follows. 

Lognormal Regression Model 

Y,, o -,, [ P,( !Jo ,x,/• ) ] 

or 

E, 
e ' i=l,2,3, ... ,n. 

where e; is an error term, and e;- iid N(0,o2
). The parameter o is a preselected small constant 

(5) 

(6) 

( e.g., 0.5, 0.01, 0.001 ), which is added to Y, to avoid the log(0) problem, and p ;=log(p 1). (Note 
that log(0) is undefined.) This model requires that xii;, 0 for all i andj. One has been added to 
each covariate (except xii) to avoid the log(0) problem in Eq. (6). Without the transformation, 
the right hand side ofEq. (5) will be rendered zero as long as one covariate has value zero, 
regardless of what the values of other covariates are. Basically, this transformation shifts the 
origin of the covariates from zero to one. Since ( 1 +0)P, = I and pj log( 1 +0)=0, these covariates 
with values of zero do not contribute to the occurrences of accidents at this new origin in Eqs. (5) 
and (6). This is a desirable property. For example, horizontal curvature should not be a 
contributing factor to the occurrences of accidents on tangent road sections. Note that this 
transformation can be applied to 0, I dummy variables without problem. Other transformations 
are, of course, possible. 
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The model can also be reexpressed as 

k (7) 

whereµ; =E[log(Y, +o) I v;,xJ =log(v) +/Ji+ E /3/og(J +x,) i=l,2, ... ,n. 
j-1 

The underlying mean, variance, and coefficient of skewness of the distribution of Y, when 
conditional onx; are given in table 1. Two interesting statistical properties can be observed: (1) 
the conditional variance is a function of the conditional mean; and (2) the coefficient of skewness 
is dependent on the constant o2, which does not go to zero as the conditional mean µi approaches 

It is important to point out that the expected value of Y, under the model is: 

µi = E[Y, I Vj, xJ =-0 + vi[ pi go +x,)p1 l l e i"' 

not 

Equation (8) includes an adjustment factor, exp(o2/2), which is multiplicative and grows 
exponentially with the variance o2. The estimator in Eq. (9), without the adjustment factor 

(8) 

(9) 

exp( 0 2/2), can be shown to provide an estimator for the median, rather than the mean, of the 
conditional probability distribution of Y,, and this estimator systematically underestimates the 
conditional mean of Y, [see e.g., Miller, 1984]. In a typical vehicle accident study, the magnitude 
of this adjustment factor is quite large because of large o2

• Therefore, ignoring this adjustment 
factor would seriously understate the expected number of vehicle accidents. The truck accident 
study of Miaou and Lum [1993] showed that without this adjustment factor the underestimations 
were over 80 percent. 

Usingthe linearized model in Eq. (6), the least squares estimates of the regression 
parameters denoted by p; and P J ,}=2,3, ... ,k, the estimated variance of the residuals denoted by 
&2, as well as the estimated variance and t-statistics of the estimated parameters, can be obtained 
with a standard linear regression computer program. Substituting the parameters and residual 
variance o2 in Eq. (8) with the least squares estimates gives an estimate of µi. That is, 

(10) 

where P1=exp (P;). This estimate is somewhat biased because exp (P;) is a biased estimate of p1• 

However, the bias of this estimate is much smaller than that using Eq. (9) as an estimator [Miller, 
1984]. 

19 



Table 1. The underlying distributions of accident frequency, Y,, for the three commonly used accident prediction models and their 
conditional mean, variance, and coefficient of skewness. 

Model Conditional E[ Y;j_x,,vJ = µ, Var[Y,lx,,vJ Skew[Y,lx,,vJ 
Distribution of Y, 

Lognormal Lognormal 

-o + v; [ P1 ( £(1 + x;) P,) ] 
!. ,,, (µ;' 0)2 (ea' -1) (e ti -1 )112 (e ti, 2) (> 0) 

Regression el 

Poisson Poisson v, [ e'; /J J µi -112 (> 0) 
Regression 

µ, 

Negative Negative v, [ e•,'P] 
2 

(1 +2«µ)/(µ,+«µ;)112 (>O) 
Binomial Binomial 

µi + ttµ; 

Regression 



The estimated variance of Pi can be approximated by [e.g., Ratkowsky, 1983, page 23] 

(11) 

and its t-statistic can be computed as 

(12) 

The expected number of vehicle accidents per vehicle mile (or kilometer) of travel, i.e., 
E(Y1jx1• v,)lv,, is called the rate function of the model and is typically denoted by l ,. This 
lognormal regression model implies that the rate function, i.e., the expected number of vehicle 
accidents, µi, in Eq. (8) divided by vehicle travel v,, is somewhat complicated because of the 
small constant o and the exponential adjustment factor. This model, however, implies that µ; is 
linearly related to the amount of vehicle travel v,. 

These types of models have been used in several recent studies, e.g., Zegeer et al. [1987], 
Zegeer et al. [I 990], and Mohamedshah et al. [I 992]. However, to this author's knowledge, most 
of these studies did not consider the adjustment factor when using the model to estimate or 
predict accidents. In addition, t-statistics of the estimated parameters were rarely reported. In a 
case study by Miaou and Lum [1993], it was shown that the selection of the small constant o can 
have significant effects on the parameter estimation when the mean level is low. In addition, the 
statistical inferences, e.g., the a level of the estimated parameters, obtained from the lognormal 
regression models can be very different from those obtained from the Poisson regression models. 

Poisson Regression Model 

Y, - Poisson(µ) i=l,2,3, ... ,n. 
(13) 

where 

(14) 

and p is a k x 1 vector of unknown regression parameters, the transpose of which is denoted by 
P' = (P 1, P2, ... , pk)- This model assumes that Y,, i=l,2, ... ,n, are independently and Poisson 
distributed with conditional mean µ1• As in the lognormal regression model, the expected 
number of vehicle accidents µ, in this model is proportional to vehicle travel v, . The model, 
however, assumes an exponential rate function, li=exp(x;P), which ensures that the accident rate 
is always nonnegative. This type of rate function has been widely employed in statistical 
literature and found to be very flexible in fitting different types of count data [ e.g., Cox and 
Lewis, 1966; Cameron and Trivedi, 1986; and Frome et al., 1990]. Note that whenever 
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appropriate higher order and interaction terms of covariates can be included in Eq. (14) without 
difficulties. 

The underlying distribution of Y; and its conditional mean, variance, and coefficient of 
skewness are presented in table 1. Two interesting statistical properties can be observed: (1) the 
conditional variance is equal to the conditional mean; and (2) the coefficient of skewness is a 
function of the conditional mean µ;, and as µi approaches "', the coefficient of skewness goes to 
zero. In previous studies, the Poisson distributional assumption is used to obtain tests and 
confidence statements about the estimated regression parameters and, unlike the lognormal 
regression model, this distribution can also be used to make reasonable probabilistic statements 
about Y; in many cases. 

The regression parameters of this model can be estimated using the ML method presented 
in Cramer [1989], or the MQL method presented in McCullagh and Nelder [1983], or the IRLS 
method described in Carroll and Ruppert [1988]. 

This model has been used to develop truck accidents and highway geometric design 
relationships in Miaou et al. [1992, 1993]. It has also been used in other areas of highway safety 
studies. For example, Jovanis and Chang [1986] used the model to examine the relationship 
between vehicle accidents and vehicle miles of travel, and Saccomanno and Buyco [1988] 
applied the model to relate vehicle accident rates with different traffic volumes, truck types, hour 
of day, and driver ages. 

A limitation of using the Poisson regression model, which is well-known in statistical 
literature [e.g., Cox, 1983; Dean and Lawless, 1989], is that the conditional variance of the data 
is restrained to be equal to the conditional mean. In many applications, count data were found to 
display extra variation or overdispersion relative to a Poisson model [e.g., Dean and Lawless, 
1989]. That is, the variance of the data was greater than the Poisson model indicated. 

In vehicle accidents-geometric design studies, the overdispersion could come from several 
possible sources. Some sources were identified in Miaou and Lum [1993]: omitted variables, 
uncertainties in vehicle exposure data and traffic variables, nonhomogeneous roadway 
environment related to the level of aggregation, and correlation between accident events. The 
effects of omitted variables will be discussed in the next section. 

The consequences of ignoring the extra variations in the Poisson regression models are that 
consistent estimates, such as the ML estimates of the regression parameters under the Poisson 
model, are still consistent; however, the variances of the estimated parameters would tend to be 
underestimated. In other words, the significance levels of the estimated parameters may be 
overstated [Cameron and Trivedi, 1990]. Following Wedderburn [1974], to correct the 
overdispersion problem for the Poisson regression model, one can assume that the variance of Y; 
is , µi instead of µi as that originally assumed in the Poisson model, where , is called the 
overdispersion parameter. Furthermore, the overdispersion parameter , can be estimated by 
X2/(n-k), where X2 is the Pearson's chi-square statistic, n is the number of observations (i.e., the 
number of road sections), and k is the number ofregression parameters in the Poisson regression 
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model. The Pearson's X2 statistic is computed as :EJy;-(t;)2/(ti, where (ti =v; exp(x/(3) and P is the 
ML estimates of the regression parameters p. A better estimate of the asymptotic t-statistic for 
each regression parameter is ,· 112 times that obtained from the original Poisson regression model 
based on the ML method [Agresti, 1990]. The Poisson regression model coupled with such an 
adjustment for overdispersion is sometimes referred to as the quasi-Poisson regression model. 

Other ways to overcome this overdispersion problem are available. A simple way is to use 
the NB distribution assumption. The NB distribution allows the conditional variance to exceed 
the conditional mean. More discussion on NB models will be given later. Currently, many 
statistical studies are under way attempting to modify existing probability functions within the 
exponential family to allow more flexible mean-variance relationships [ e.g., Efron, 1986; 
Gelfand and Dalal, 1990]. 

To help the discussion on the relationship between the Poisson and NB regression models, 
the following is a brief discussion of the effect of omitted variables on the Poisson regression. 
As indicated earlier, in developing accident prediction models, driver and vehicle variables are 
largely unavailable by site. To reflect this in the Poisson model, Eq. (14) can be rewritten to 
make omitted variables explicit as follows: 

(15) 

where zif, j= 1,2, ... ,k' are values of omitted variables Z ii; y i is the regression parameter associated 
with omitted variable Z ii; and z; and y are vector representations of zif and Yj, respectively. It 
can be shown that if exp(:EZu Yi) follows a gamma distribution, then Y, given X; is NB distributed 
[Cameron and Trivedi, 1986]. More discussion will be given later. 

Negative Binomial Regression Model 

To deal with the overdispersion problem in count data, one commonly used distribution is 
the NB distribution. The typical NB regression model has the following form: 

P(Y =y) = ITY,+-1;/ ( 1 ) ;, ( a,µ, ) Y, , Y, =0, 1, 2, ... 
i i JTy+l)JT.!__) 1 •tr,µ, I•«,µ, 

I (Z 
I 

(16) 

where 

i=l,2,3, ... ,n. (17) 

and the conditional variance of Y; is a quadratic function of conditional mean: 

(18) 
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where ai ~ 0 and are usually referred to as dispersion parameters. From Eq. (18) one can see that 
this model allows the conditional variance to exceed the conditional mean. Also, the Poisson 
regression model can be regarded as a limiting model of the NB regression model as all «; 
approach zero. This model will be denoted as NB(µ;:«;). 

The standard NB regression model that has been used in accident prediction modeling (and 
areas such as econometrics and biometrics) is a special case ofEq. (16) where«;, i=l,2, .. ,n, are 
set equal to a constant a(> 0). Note that such standard NB models will be denoted as NB(µ;; «). 
The conditional mean, variance, and coefficient of skewness for such standard NB regression 
models are given in table 1. 

A wide range of variance-mean relationships can be obtained by letting, e.g., «;=a(µ; )•c 
for a >0 and an arbitrary constant c [Cameron and Trivedi, 1986]. One can show that, under 
such a choice of a;, the conditional variance becomes 

(19) 

The variance-mean relationship of the standard NB regression model is, of course, a special case 
of Eq. (19) with c=0. In addition, the variance-mean relationship of the quasi-Poisson regression 
model discussed earlier can also be represented by Eq. (19) with c=l, i.e.,,= 1 +a. Even though 
Eq. (19) provides a more flexible variance-mean relationship, to the best of this author's 
knowledge, no accident prediction models have been reported using such a relationship because 
of its computational difficulty. Note that this author is aware of some ongoing research aimed at 
identifying an appropriate range of c values for use in developing accident prediction models. In 
this study, only standard NB regression models are considered. 

The NB regression model can be derived from the Poisson regression model under the 
assumption that the exponent of the omitted variables in Eq. (15), i.e., exp(};Zifyi), follows a 
gamma distribution [Cameron and Trivedi, 1986]. The implication of this assumption is that 
even if the observed values of the available covariates, x,, are the same for different sites, the 
conditional means of the Poisson, µ;, will be different from site to site and follow a gamma 
distribution because of the differences in unobserved covariates Z; among these sites. Even 
though the gamma probability function is quite a flexible function, there is still some 
arbitrariness involved here. For example, if (};Zifyi) is normally distributed, then exp(};Zi/yj) is 
lognormally distributed. In many cases, the gamma distribution is a good approximation for the 
lognormal distribution. Therefore, in such cases, the use of NB distribution is justified. 
However, if (};Zifyi) happens to be, e.g., uniformly distributed with a narrow range of variation, 
then the gamma distribution is simply not a good approximation for the distribution of 
exp(};Zifyi) and the use of NB distribution cannot be justified. For real-world problems, since Z, 
are omitted variables, their exact distributions are unknown. However, using the Central Limit 
Theorem, one can argue that if(};Zifyi) is made up of the sum of many small effects, then (};Zifyi) 
is likely to be normally distributed and NB distribution assumption is likely to be justified. 
Obviously, more research in this area is needed. 
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The ML estimation of the NB regression model and the calculation of associated statistics 
are described in detail by Lawless [I 987]. The moment estimation, which was first suggested by 
Breslow [1984], is also commonly used for estimating the parameters in the NB model. Another 
estimation method for estimating the NB regression model is a regression-based estimation 
method suggested by Cameron and Trivedi [1986, 1990]. Miaou [1994] conducted a study to 
compare the estimation results from these three estimation methods using 5 years of truck 
accident data collected on rural Interstate highway sections in Utah. On average, the studied road 
sections had a relatively low mean accident frequency per site (about 0.2 truck accident 
involvements per site). It was found that the estimated dispersion parameters were quite 
different from the three methods and suggested that the moment method and regression-based 
method should be used with caution. 

The NB regression model using the ML method has been used in Miaou et al. [1993] to 
establish truck accidents-geometric design relationships for three different roadway classes. 
Although the NB regression model is more general than the Poisson regression model, it requires 
more extensive computations to estimate model parameters and to generate inferential statistics 
than the Poisson regression model. Furthermore, the statistical property of different estimators, 
e.g., the ML and moment estimators, of the NB regression model under different mean levels and 
sample sizes have not yet been fully investigated. 

POTENTIAL MISSPECIFICATIONS OF ACCIDENT PREDICTION MODELS 

The number of possible misspecifications that could be made when developing accident 
prediction models is very large, but most of them fall into one of the following categories: (1) 
sampling and nonsampling errors in collected data for dependent and independent variables; (2) 
omitted variables; (3) non-Poisson or non-NB distribution; (4) imprecise mean function; and (5) 
correlation. Some of these possible misspecifications have been mentioned or discussed earlier. 
The following is a summary of the effects of these potential misspecifications in developing 
accident prediction models. 

(1) Sampling and nonsampling errors in collected data/or dependent and independent variables. 

For many years, accident prediction models have been proposed for evaluating the relative 
safety of roadway design alternatives and for identifying high risk locations for reconditioning 
and safety improvements [TRB, 1987; AASHTO, 1989]. Despite significant progress in the 
development of accident prediction models over the last decade (largely because of the use of the 
Generalized Linear Models (GLM) [McCullagh and Nelder, 1983]), many roadway design 
engineers and safety planners are still not confident with these models. One of the reasons is the 
lack of confidence in the quality of the reported accident data, from which accident prediction 
models are developed. One quality issue of major concern is the underreporting of accidents, 
especially, the underreporting of minor injury and property damage only (PDO) accidents. 
Because of this underreporting problem, questions have been raised regarding ( 1) the statistical 
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validity of the developed accident prediction models; and (2) the potential of accident prediction 
models to understate the benefits of various improvements in roadway design. 

It has long been established in statistical literature that, under a mild assumption, the 
underreporting of accidents would not affect the statistical validity of the accident prediction 
models [see e.g., Hauer and Hakkert, 1988]. However, to account for the underreporting, these 
accident prediction models would have to be adjusted by a factor which, in essence, indicates the 
rate of underreporting. In other words, the development of accident prediction models using 
reported accident data is valid, provided that the underreporting of accidents be adjusted outside 
of the models. Depending on the extent of underreporting, without proper adjustments, the use 
of accident prediction models would indeed understate the benefits of roadway improvements. 

In practice, to adjust for underreporting, the underreporting rates have to be estimated for 
various classes of accident prediction models, such as those considered in FHW A's "Interactive 
Highway Design Models" [Harwood et al., 1994]. Specifically, it is necessary to know the 
underreporting rate by roadway type (e.g., rural Interstates, urban Interstates and freeways, urban 
principal multi-lane arterial, and rural two-lane arterial), by highway geometric type and feature 
(e.g., road sections, intersections, ramps, and roadsides), by vehicle type (e.g., light vehicles and 
large trucks), by accident severity type (e.g., fatal, injury, and PDO accidents), and perhaps by 
lighting and weather conditions. 

In addition to the underreporting problem, the location of accidents is also subject to errors. 
The location of an accident is often estimated by the police, and occasionally it is roughly 
assigned to the nearest milepost of the route where it occurred. Therefore, assigning vehicle 
accidents to very short road sections are more susceptible to locational error than assigning them 
to longer road sections. This uncertainty in accident location creates a so-called errors in 
dependent variable problem. As a result, extra model uncertainties are introduced. No study has 
been found in this particular area. 

Another source of uncertainty (or error) is the measurement of traffic volume by vehicle 
type and time of day. Vehicle exposure data, computed from AADT and percent vehicles, come 
primarily from FHW A's Highway Performance Monitoring System (HPMS), a highway 
sampling system statistically designed to obtain physical, traffic, and operational information on 
national highways from a small portion of selected highway sections [FHWA, 1987]. Both 
AADT and percent vehicles are subject to sampling errors (e.g., daily, day-of-week, seasonal, 
and spatial variations) and nonsampling errors (e.g., vehicle axle counting and vehicle 
classification errors). This area is rarely studied. Miaou et al. [1993] attempted to include the 
sampling errors of vehicle exposure data in their NB regression models. 

It should be emphasized that, despite the data quality problem mentioned above, the quality 
of accident, traffic, and roadway design data has improved significantly over the years because of 
the use of better computer and other electronic technologies. This trend is expected to continue 
in the future. 

26 



(2) Omitted variables. 

As discussed earlier, in developing accident prediction models, driver and vehicle 
variables are largely unavailable by site. The effects of omitted variables on the selection of 
probability function P(.) have been discussed earlier and will not be repeated here. 

If some of the available covariates X's are correlated with some of the omitted variables Z's, 
then the estimated parameters for these X's are biased. This bias is sometimes referred to as 
omitted variable bias. It should be noted, however, that the predictions from the estimated 
model will still be good if the correlations between these X's and Z's persist into the predicted 
future. 

When time-series data are available, the effects of those omitted variables which are 
constant for individual sites or groups of sites could sometimes be captured using the so-called 
fixc.d effect models (as opposed to random effect models) in econometrics literature. For a 
discussion on fixed effect and random effect models, the book Analysis of Panel Data by Hsiao 
[1986] is a good starting reference. Generally speaking, there are two types of fixed effects: 
fixed time and fixed site. Ideally, fixed time and fixed site effects account for immobile factors 
specific to individual time intervals or sites. (Note that, by extending this immobile factors 
concept, fixed effects can very well be applied to a group of time intervals or sites.) For 
example, an abnormal weather condition at all sites under study has a fixed time effect; while 
unknown driver and vehicle factors, to the extent that they do not vary over time, have fixed site 
effects. Most of the accident prediction models that this author is aware of are developed with 
panel data with a relative short time series, and are typically developed without fixed site effects. 
At present, it is not clear whether fixed site effects could be well determined using such short 
time series data. If not, it would be interesting to see if the fixed site effect models can be used 
to reinforce our overall confidence in the model specification. The author of this report is not 
aware of any comprehensive study that examined the relative strengths and limitations of using 
fixed effect and random effect models under the Poisson and NB distributional assumptions in 
accident prediction modeling. Some research in this area should be useful. For example, the use 
of empirical Bayes (EB) method to understand and quantify the effects of omitted variables. 
Note that, traditionally, EB method has been used only to alleviate the so-called regression-to
the-mean site selection bias problem [Morris et al., 1991; Christiansen et al., 1992]. More 
experimental research on drivers' response to roadway and roadside designs and weather 
conditions may also be useful. 

(3) Non-Poisson or non-NB distribution. 

As indicated earlier, the aggregation level used to define a site, e.g., length of road sections 
or radius of intersections, and the associated length-of-time intervals also play some role in the 
choice of P(.). The higher the level of aggregation, the less the site can be considered 
homogeneous, and the further the accident frequency of each site deviates from the Poisson 
distribution. For example, vehicle accident rate during daytime and nighttime may be very 
different, failing to disaggregate daytime and nighttime vehicle accidents and associated vehicle 
miles in the analysis may introduce extra unexplainable variations into the data. 
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The NB regression model is based on the assumption that the exponent of the omitted 
variables, exp(l:Z!i y), follows a gamma distribution. For real-world problems, since Z; are 
omitted variables, the exact distributions of Z; are unknown. There is always some possibility 
that this assumption may not be appropriate. In addition, as discussed earlier, there is more than 
one NB probability function that one can choose from, each of which implies a specific mean
variance relationship. The most commonly used NB distribution is the one with a quadratic 
variance function, i.e., the variance is a quadratic function of the mean. The actual variance
mean relationship may differ from this assumed quadratic relationship. More research on this 
subject is not critical in the near future, but it should be encouraged. 

(4) Imprecise mean/unction. 

As indicated earlier, the effects of X's on accident frequency Y are nonlinear and interactive 
in nature. This, together with the consideration that the mean function has to be nonnegative, 
suggests the use of the exponential function in conventional Poisson and NB regression models. 
Although the exponential function has been widely used in many areas, it is possible that the 
actual relationship may differ somewhat from the exponential function. Although there are 
some statistical tests that have recently been developed to help assess the goodness-of-fit of 
different mean functions [e.g., Cheng and Wu, 1994], these tests are still not widely known in 
most areas and the power of these tests have not been examined in practice. To date, most of the 
studies on accidents-flow-roadway design relationships seem to have found the exponential mean 
function to be satisfactory. Therefore, the statistical research in this area is not likely to be 
particularly beneficial to the overall development of accidents-flow-roadway design models in 
the near future. On the other hand, the engineering types of research, as described in chapter 2, 
which attempts to refine mean functions based on the use of traffic flow theory, geometry, 
vehicle dynamics, driver behavior models, and probability theory is more likely to help us 
understand the details of accident process and should be encouraged. 

(5) Correlation. 

The occurrences of vehicle accidents may be correlated between different road sections in 
different time periods, rather than independent [e.g., Maher, 1990; Black, 1991]. In the paper by 
Maher [1990], a phenomenon called accident migration was discussed. This is a phenomenon 
whereby the accident rate rises at sites that are untreated but are neighbors to treated sites. This 
phenomenon may be related to the change of drivers' expectation after the site is treated. 
Overall, this correlation problem has not been perceived to be important in most of the accidents
flow-roadway design relationship studies. In addition, the correlation problem is likely to be 
reduced when time-specific constants (or fixed time effects) are included in the model. 

SOME ADDITIONAL OBSERVATIONS 

In this section, some additional observations on the current status of the accident and 
related data and the development of accident prediction models for roadway planning and design 
are offered: 
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(I) Accident frequency and severity level are direct and easy to understand measures of 
roadway safety. In spite of the criticisms made by many regarding the data quality issues 
on minor accidents, a good cost-effective alternative measure, that is acceptable to both 
engineers and policy-makers, is still to be found. 

(2) In the last few years, the use of computer, telecommunication, and other electronic 
technologies has begun to make the data collection, linking, and checking much easier and 
faster. 

(3) The development of the Highway Safety Information System (HSIS) by FHWA has made 
it possible for safety researchers to statistically analyze the complex interactions of the five 
major factors described earlier that lead to the occurrence of vehicle accidents. As a result, 
many important and encouraging results, based on the HSIS data, have been reported. 

( 4) A cost-effective instrument to obtain necessary and quality data at the national level for 
estimating the underreporting rates discussed earlier has not yet been identified. 

(5) The transferability of models developed using data from one location for use in another 
location has not been clear. Because the HSIS includes data from many States, it provides 
a unique opportunity for researchers to study the model transferability issue among States. 
As a start, this author suggests that, for the same roadway class, estimated model 
parameters (e.g., ~) of the same design element (e.g., horizontal curvature, paved shoulder 
width) be compared for models developed in different States. A quick check made by this 
author using the Poisson and NB regression models developed for rural two-lane roads in 
two of the HSIS States suggested that the estimated parameters of paved shoulder width are 
very consistent between the two States. 

29 





3. COEFFICIENT OF DETERMINATION, R2 

The objective of this chapter is to demonstrate the pitfalls of using the R2 values to 
determine the goodness-of-fit of accident prediction models that are typically non-normal and 
nonlinear. The demonstrations will be given using computer simulated data from commonly 
used accident prediction models, such as Poisson and NB regression models. Sampling 
variations (or sampling errors) ofR2 values caused by the use of finite samples are also 
illustrated in these demonstrations. 

Only models with an intercept term are considered in the demonstration. The reason is that 
all the accident prediction models that this author is aware of have an intercept term. Note that 
models without an intercept term can have very peculiar statistical properties [Kvalseth, 1985]. 

As in earlier chapters, a perfect model will be referred to as a model that (1) has specified a 
correct probability distribution for the dependent variable; (2) has chosen a correct functional 
form which describes the relationship between the expected number of accidents and associated 
covariates; (3) has included all necessary covariates; and (4) has correctly estimated each 
model parameter. 

The notations used in this chapter shall be consistent with those used in chapter 2. For 
example, Y; is a dependent variable representing the accident frequency of the ith site/time 
interval, the observation or sample value of which is denoted by y;; X; is a collection of all 
available covariates or independent variables that affect the accident frequency of the ith 
site/time interval, whose sample values are denoted by x;; and Z; is a collection of all omitted 
independent variables associated with the ith site/time interval, whose values (if observed) are 
denoted by Z;. 

First, the formulae for R2 and R2 are presented and interpreted using the concept of 
conditional and unconditional variances. Second, an interesting simple example which uses a 
normal linear regression model with an intercept and one covariate is demonstrated. Third, a 
more sophisticated demonstration using the lognormal regression model is presented. Similar 
demonstrations for two key types of accident prediction models, Poisson and NB regressions, are 
then given. At the end, the pitfalls of using R2 values to determine the goodness-of-fit of 
accident prediction models as demonstrated in this chapter are summarized. 

INTERPRETATION AND FORMULATION OF R2 AND R2 

The definition ofR2 which was presented earlier in Eq. (4) is repeated here for 
convenience. 

Preceding page blank 
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R 2 = Total Explained Variance of Y by Available X 
Total Unconditional Variance of Y 

Total Unexplained Variance of Y 
= 1 - -------"--------=--

Total Unconditional Variance of Y 

(20) 

Many basic statistics and probability textbooks [ e.g., Ross, 1989; Rohatgi, 1976] show that the 
unconditional variance of Y; can be broken down into two components: Var[YJ=E[Var[Y,]X,, 
ZJJ + Var[E[Y;]X,,ZJJ, where X; and Z, represent available and omitted covariates, respectively. 
Following the discussion in chapter 2, the first component, E[Var[Y;]X,, ZJJ, is the random 
variance, and the second component, Var[E[Y,]X,, ZJJ, is the systematic variance. Also, in the 
first component, E[Var[Y,]X,, ZJJ, the variance is first taken over Y, and then the expectation is 
taken over X, and Z;, Similarly, in the second component, Var[E[Y;]X,, ZJJ, the expectation is 
first taken over Y, and then the variance is taken over x; and Z1• 

Now, given Y,, x;, and Z1, Eq. (20) can be statistically expressed as 

R 1 = Var[E[Y,IXJJ 

Var[Y,] 

Var[EfYi]X,}J = I _ VarfYi] - Var[EfYilX;JJ 

Var[Y,] 
(21) 

It is clear from Eq. (21) that, even for a perfect linear regression model, the R2 value from Eq. 
(21) can not reach 1 if the random variance, E[Var[Y,]X,, Z,J], is not zero. This was shown for a 
normal linear regression model in chapter 2. 

The discussion above applies to hypothetical situations where a correctly estimated model 
that has no sampling errors is obtained. In practice, the number of data available for developing 
a model is always finite. And, under finite samples, even if one could specify probability 
function and the form of mean function correctly and include all necessary covariates (i.e., no 
omitted variables), it is not possible to estimate parameters precisely. The only guarantee that 
the analysts have when using a consistent estimator, such as the ML method, is that as sample 
size increases the uncertainty of the parameter estimates decreases. For a finite sample of size n, 
a sampling estimate of the R2 value in Eq. (21) is: 

I r(; ')2 -~ Y;-Y; 
R2 = I _ _ n_,._1 __ _ 

Ir -2 -~(y, -y) 
n ;.1 

• 
E(y1-ii 

= I - _,._1 __ _ 
(22) 
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where yis sample mean and$>; is an estimate of the conditional mean of Y; given available xs. 
(Note that in this report J; and Jli are used interchangeably.) This formulation applies to both 
linear and nonlinear regression models. Kvalseth [1985] presented several other possible forms 
for R2 and recommended that Eq. (22) "ought to be used consistently for any type of model- and 
curve (surface)-fitting techniques." 

To adjust for the degrees of freedom available to ( or the number of unknown parameters 
used in) the model, the adjusted R2 is typically used and computed as: 

K = I -

1 E" ✓, •;2 
~ ;.J 1Y, ·Y; 

1 E" -2 -1 (y,-y) 
n - 1-1 

(23) 

where k is the total number of unknown parameters (including the intercept) in the model. 

NORMAL LINEAR REGRESSION MODELS 

Barrett in his 1974 paper gave an interesting illustration of the property ofR2 in which he 
used a simple normal linear regression model with an intercept and one covariate [Barrett, 1974]. 
Basically, it was shown that if the slope parameter in the model is increased continuously, while 
keeping everything else fixed (including the centroid and residuals), the R2 value would continue 
to increase. In this section, the results of a similar illustration is presented and the reason why 
the R2 value increases as the slope parameter increases is explained. 

The normal linear regression model under consideration is as follows: 

i = 1, 2, ... , 50. 
(24) 

where Y, are dependent variables; x1 are the observed values of covariate X1 ; the residuals e; are 
distributed as iid N(0, 0. 01); and a is the slope parameter. Furthermore, it is assumed thatx; are 
iid and are uniformly distributed between -1 and 1, denoted by x; ~ iid U[-1,1]. As before, the 
observations of Y1 will be denoted by y,. In addition, the sample value of the residuals ei will be 
denoted bye;. The sample size n, as indicated in Eq. (24), is 50. 

The simulation is conducted as follows: 

Step 1. 
Step 2. 
Step 3. 
Step 4. 

Generate e; from N(0, 0.01) for i=l,2, ... ,50 (denoted bye;); 
GenerateX1 from U[-1,1] for i=l,2, ... ,50 (denoted by x1 ); 

Set a equal to 0.1; 
Computey1 = J.0+ax1+e1 for i=l,2, ... ,50; 
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Step 5. 
Step 6. 
Step 7. 

Compute estimates.P;=l.0+ax; for i=l,2, ... ,50 (best estimates); 
Compute R2 using Eq. (22); and 
Stop, if a=0.8; otherwise set a equal to 2a and return to step 4. 

Figure 3 shows the simulation results for a=0.1, 0.2, 0.4, and 0.8. It shows that the R2 value 
increases from 0.439 to 0.966 as a increases from 0.1 to 0.8. Essentially, in this simulation, the 
angle of the regression line is rotated counter-clockwise from 5.7 degrees to 38.7 degrees around 
the centroid (x=0, y= 1) [see also table 2]. Bothe; and X; are fixed when rotating. In step 5, J; 
=l.O+ax; is the best estimate of the mean of Y; one can obtain given X; (which has no sampling 
errors). 

Conceptually, all four estimated models are perfect and should all have a R2 value of 1. 
The reason why the R2 value increases as a increases can be explained using Eq. (21). Basically, 
in this illustration the random variance, E[Var[Y;IXJ], is fixed and is equal to o2=0.01; while the 
systematic variance, Var[E[Y;IXJ], increases as a increases. Note that there is no omitted 
variables (Z's) in this case. In an illustration like this, since the random variance o2 is known, the 
R2 measure can easily be adjusted by removing the random variance from the total variance of Y; 
as follows: 

!... ..['(y, -y,)1 - d 
R 2 1 n,.1 

0 = - -------

1 E" - 2 ~ - (y, -y) - <T 

n ,.1 
(25) 

where o2=0.01. Now, by applying Eq. (25), it was found that all four fitted lines in figure 3 
indeed have Ro2 values very close to 1. Unfortunately, for most of the real-world problems with 
multiple covariates, this adjustment can not be made because it is not possible to distinguish the 
part of systematic variance that is caused by omitted variables from the random variance. 

LOGNORMAL REGRESSION MODELS 

As indicated earlier, the lognormal regression model has been shown to be inadequate for 
developing accidents-flow-roadway design relationships. It is presented here only for 
illustration purpose. 

The simulated lognormal regression model has the following form: 

y;· = log(Y
1
) - N ( µ;, d) (26) 

whereµ;=E[Y;"[xJ=P1x;1 +P2 x12 +P3 x;3 , i=l,2, ... ,n. 

The covariate X,1 is a dummy variable equal to 1 (i.e., p I is the intercept); X;2 is the observed 
value of random variable X,2 which is iid as U[-1, 1 ]; and x;3 is the observed value of random 
variable X,3 which is iid and has probabilities of 0.3, 0.4, and 0.3 of being observed to be 
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Figure 3. R 2 values of a linear regression model under different slope parameters. 
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Table 2. R2 values of a linear regression model under different slope parameters. 

Linear Regression Model: Y; = 1.0 + ctX; +e; 
x; ~ iid U{-1,1}, e;~ iid N(0, 0.01), sample size n=50 

Slope Parameter (a) Slope Angle (in degrees) R2 

a =0.0 0 0 

a= 0.1 5.7 0.439 

a= 0.2 11.3 0.699 

a= 0.4 21.8 0.887 

a =0.8 38.7 0.996 
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-1, 0, 1, respectively. The conditional variance of Y,' ( or log(YJ) given X; is o2=0. l. The 
regression parameters P are set as follows: p 1=0.1, p2=0.25, and p3=0.25. Note that.X,2 and Xi3 
are independent. 

The purpose of this simulation is to show that R2 is subject to sampling error and its value 
can be substantially less than 1 even if all covariates are included. The simulation is conducted 
for different sample sizes (n= 50, JOO, 200, 500, 1,000, 2,000, 3,500, and 5,000). For each 
sample size, 10,000 data sets (each with a sample size ofn) are generated using Eq. (26), then 
regression parameters are estimated and R2 values computed for each data set. For example, for 
n=50, the following steps are taken in each simulation run: 

Step 1. 
Step 2. 
Step 3. 
Step 4. 
Step 5. 

Step 6. 
Step 7. 
Step 8. 

Step 9. 
Step 10. 

Step 11. 
Step 12. 

Set n=50 and m=O (m=data set); 
Setm=m+l; 
Generate E; from N(O, 0.1) for i=l,2, ... ,n (denoted bye;); 
Generate X,2 from U[-1,1] for i=J,2, ... ,n (denoted by X;2 ); 

Generate a uniformly distributed deviate u from U[O,J]; if u<0.3, xi3=-l; if 
0.3su<O. 7, xi3=0; and ifu~o. 7, x;3=1; for i=J,2, ... ,n; 
Compute y;*=log(yJ = O.J+0.25x;2+0.25x;3+ e; for i=l,2, ... ,n; 
Generate Y; = exp(y;*) for i=l,2, ... ,n; 
Estimate parameters P's for the lognorrnal regression model: Y;* = l3 1+p 2 x;2 + P3x;3 + 
ei , with the least squares method using the entire sample of size n (the estimated 
parameters are denoted by Pi ,j=l,2,3); 
Estimate the variance of model residual E; , denoted by o2; 
Compute the prediction f;=exp( '/31+ '/32 X;2 + '/33x0 +0.5a2) for i=J,2, ... ,50 (best 
prediction of the conditional mean of Y; with no omitted variables); 
Compute R2 using Eq. (22) and save the value; and 
Stop, if m = 10,000; otherwise return to step 1. 

This distribution of the 10,000 R2 values is recorded and its mean, 0.5 percentile, and 99.5 
percentile are computed. Figure 4 shows the mean, 0.5 percentile, 99.5 percentile of the 10,000 
R2 values from the simulation for different sample sizes. (Note that figure 4 has three pages. 
More detailed distribution for each examined sample size is shown on the second and third 
pages.) For each sample size n, the mean of the 10,000 R2 values is about 0.35. The interval 
between 0.5 percentile and 99.5 percentile contains 99 percent of the 10,000 R2 values. The size 
of the interval decreases rather quickly as the sample size increases. For example, for a sample 
size of 50, there is a 99 percent probability that the R2 value will fall within the interval between 
about 0.12 and 0.63. As the sample size increases to 500, the interval falls between 0.27 and 
0.44. Table 3 shows more detailed descriptive statistics of the distribution of these R2 values by 
sample size. 

In theory, as sample size n approaches 00 , the sampling error reduces to zero and thus the 
parameters are correctly estimated. That is, at n= 00, the perfect model as defined earlier is 
obtained. The R2 value under the perfect model can be computed using Eq. (21) as follows: 
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Table 3. Statistics ofR2 values of 10,000 simulation runs from a lognormal regression model at different sample sizes. 

Statistics ofR2 Values 

Mean 

Standard Deviation 

Skewness Coeff. 

0.5 Percentile 

99.5 Percentile 

Lognormal Regression Model: log (Y) - N(µ/, er) 
µ; • = 0. lxu + 0.25x,2 +0.25x;3 

x,1 = 1, X,2 - iid U[-1, 1 ], X,3 = -1, 0, 1 with probability 0. 3, 0.4, 0.3, respectively. o2 = 0.1 

n=50 n=l00 n=200 n=500 n=l,000 n=2,000 

0.373 0.365 0.357 0.354 0.349 0.340 

0.101 0.074 0.050 0.033 0.023 0.016 

0.021 -0.001 0.029 0.019 -0.022 -0.030 

0.124 0.175 0.225 0.272 0.290 0.297 

0.628 0.550 0.487 0.437 0.408 0.381 

n=3,500 

0.342 

0.012 

-0.028 

0.310 

0.373 

n=5,000 

0.349 

0.010 

0.007 

0.324 

0.375 



(I) Random variance, E[Var[Y;IXJ}: 

Since the conditional probability P(Y;lx; ) is lognormal, E[Y;lx;J=exp( {)1+ f)2 X;2 + f)3 X;3 

+0.5 a2) and Var[Y;IXJ = {E[Y;IXJ)2 {exp( a2 )-1} [see e.g., Lindgren, 1976, page 191). 
Therefore, the random variance E[Var[Y;IXJJ = E[ {E[Y;IXJ)2 {exp(<r) -1} J = 
E[ {exp( /J1+/J2 X,2 + f)3 X;3 +0.5a2) )2 {exp(a2) -1}]. Since X,2 is U[-1,1], it can be 
shown that E[exp(/J2 X;-)J={exp(f)2) - exp(-{)2))/2{)2 • In addition, it can be shown that 
E[exp(f)3 X;JJ=0.3exp(-f))+0.4+0.3exp(/J3 ). Therefore, E{Var[Y;IXJJ= exp( 2f)J 
{{exp(2f)2 ) - exp(-2{)2 ))14/32 } {0.3exp(-2f)3) +0.4+0.3exp(2P3 )} exp(<r ){exp(<r )-1}= 
0.1593. 

(2) Systematic variance, Var[E[Y;IXJ]: 

Var{E[Y;IXJJ= Var[exp( {)1+ P2X;2 + P3X;3 +0.5 a2)J= exp(2f)1+a2) Var{exp(f)2X;2 + f)3X;3 )} 

where Var[exp( f)2X;2 + {)3 X;3 )} =E[exp(2 P2X;2 + 2 /J3 X;3 )]-{E{exp( /J2X;2 + f)3X;3 ))2. 
Using the relationships that E[exp(f)2X;-)]={exp(f)2) - exp(-f)2)}/2f)2 and 
E{exp(f)~JJ=0.3exp(/JJ +0.4+0.Jexp(/33 ), it can be shown that Var[E[Y;JXJJ =0.0839. 

Therefore, for the perfect model, R2=0.0839/(0.O839+0.1593)=0.345. This R2 value is 
consistent with the simulation results shown in figure 4, which converges to a value of about 3 .5 
as the sample size increases. 

POISSON REGRESSION MODELS 

The simulated Poisson regression model has the following form: 

Y, - Poisson(µ,) (27) 
where µ, =E[Y, Jx,] =exp( P1x,1 + p1 x12 + p3 x13 ), i=l,2, ... ,n. 

Same as in the lognormal regression illustration above, the covariate X;1 is a dummy variable 
equal to 1 (i.e., p I is the intercept); X;2 is the observed value of random variable X;2 which is 
distributed as iid U[-1, lj; and xiJ is the observed value of random variable X;3 which is iid and 
has probabilities of0.3, 0.4, and 0.3 of being observed to be -1, 0, 1, respectively. Since this is a 
Poisson model, the conditional variance of Y, given x, is equal to its conditional mean: Var[Y,JxJ 
=E[Y,lxJ. The regression parameters Pare set as follows: P1=4 or 7, P2=0. l, and p3=0.l. 
Again, X;2 and X;3 are independent. 

Besides showing that R2 is subject to sampling errors and its value for a perfect model can 
be substantially less than 1, this illustration further shows that the R 2 value is dependent on the 
mean level of the Poisson model. Specifically, higher mean levels result in higher R2 values. 
Again, this simulation is conducted for different sample sizes (n= 50, 100, 200, 500, 1,000, 
2,000, 3,500, and 5,000). For example, for n=50 and p1=4, the following steps are taken in each 
simulation run: 
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Step 1. 
Step 2. 
Step 3. 
Step 4. 

Step 5. 
Step 6. 
Step 7. 

Step 8. 

Step 9. 
Step 10. 

Set n=50 and rn=O (m=data set); 
Setrn=rn+l; 
Generate x 12 from U[-1,1] for i=l,2, ... ,n; 
Generate a uniformly distributed deviate u from U[O,l]; ifu<0.3, x13=-l; if 
0.3su<0.7, X;3=0; and ifu~0.7, x0 =1; for i=l,2, ... ,n; 
Compute µ 1= exp(4.0+0.lx,2+0.lx,3) for i=l,2, ... ,n; 
Generate y, from Poisson(µ,) for i=l,2, ... ,n; 
Estimate parameters P for the Poisson regression model: Y, ~ Poisson(µ,) where µ; = 
exp(p 1+p 2x,2 + P:iXiJ). The ML estimation method is used for the entire sample of 
size n; (the estimated parameters are denoted by ~j ,j=l,2,3); 
Compute the ML estimate of the conditional mean.P1= ~;=exp( J31+J32 x12 + J]3xi3) 
for i=l,2, ... ,50 (best estimate of the conditional mean); 
Compute R2 value using Eq. (22) and save the value; and 
Stop, if rn= 10,000; otherwise return to step 2. 

The same simulation steps were performed for P1=7, which has a much higher mean level 
than when P1=4. Figure S shows the mean, 0.5 percentile, 99.5 percentile of the 10,000 R2 values 
from the simulation for different sample sizes. (Note that figure 5 has three pages. For P1=4, 
more detailed distribution for each examined sample size is shown on the second and third 
pages.) For each sample size n, the mean of the 10,000 R2 values is about 0.34 and 0.91 for 
p1=4 and p 1=7, respectively. The interval between 0.5 percentile and 99.5 percentile contains 99 
percent of the 10,000 R2 values. The size of the interval decreases rather quickly as the sample 
size increases. For example, for a sample size of 50 and p 1=4, there is a 99-percent probability 
that the R2 value will fall within the interval between about 0.12 and 0.61. As the sample size 
increases to 500, the interval falls between 0.26 and 0.41. Table 4 shows more detailed 
descriptive statistics of the distribution of these R2 values by the sample size. 

In theory, as the sample size n approaches=, the sampling error reduces to zero and thus 
the parameters are correctly estimated. That is, at n=00 , the perfect model as defined earlier is 
obtained. Using the same procedure as in the lognormal regression model, the R2 value under 
the perfect model can be computed using Eq. (21) as follows: 

(1) Random variance, E[Var[Y;]XJ]: 

Since the conditional probability P(Y;\X;) is Poisson, Var[Y,IXJ =E[Y,]X,] = exp( P, + P2.X,2 

+p)(,3 ). Therefore, the random variance E[Var[Y,IXJ] = E[exp( P,+P2X;2 + p)(iJ)]. 
Since X,2 is U[-1,1], it can be shown that E[exp(p2.X,i)J={exp(P2) - exp(-P2)}12P2 • It can 
also be shown that E[exp(PAJJ]=0.3exp(-ft3)+0.4+0.3exp(P3 ). Therefore, E[Var[Y,IXJJ= 
exp( pJ {{exp(f)2 ) - exp(-/32))/2{)2 } {0.3exp(-f)3)+0.4+0.3exp(P3 )} which is equal to 
54.8534 and 1,101.76 for P1=4 and p1=7, respectively. 
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µ. = exp( 4 x + O.lxi2 + O.lxi3 ) 
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µ i = exp( 4 xii+ o.tx i2 + O.lx i3 ) 
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Table 4. Statistics ofR2 values of 10,000 simulation runs from two Poisson regression models at different sample sizes. 

Statistics ofR2 Values 

Mean 

Standard Deviation 

Skewness Coeff. 

0.5 Percentile 

99. 5 Percentile 

Statistics ofR2 Values 

Mean 

Standard Deviation 

Skewness Coeff. 

0.5 Percentile 

99 .5 Percentile 

(a) Poisson Regression Model: Y; - Poisson(µ) 
µi = exp(4xil + 0.lx;2 +0.lx;J 

xil =1, X;2 -iid U[-1,1], X;3 = -1, 0, 1 with probability 0.3, 0.4, 0.3, respectively. 

n=50 n=JO0 n=200 n=500 n=l,000 n=2,000 n=3,500 

0.367 0.335 0.366 0.335 0.330 0.339 0.339 

0.099 0.071 0.050 0.031 0.022 0.016 0.012 

-0.004 0.004 0.023 -0.029 0.013 -0.008 -0.007 

0.121 0.153 0.242 0.258 0.274 0.299 0.310 

0.61 l 0.517 0.491 0.413 0.388 0.379 0.369 

(b) Same model as in (a) except that µi = exp(7xil + 0. lx;2 +0. lx;J 

n=50 n=JO0 n=200 n=500 n=l,000 n=2,000 n=3,500 

0.916 0.900 0.916 0.907 0.914 0.913 0.912 

0.017 0.014 0.008 0.006 0.004 0.003 0.002 

-0.415 -0.306 -0.193 -0.110 -0.082 -0.119 -0.019 

0.865 0.860 0.894 0.891 0.905 0.906 0.907 

0.954 0.932 0.935 0.921 0.923 0.919 0.917 

n=5,000 

0.344 

0.010 

-0.004 

0.323 

0.370 

n=5,000 

0.912 

0.002 

0.095 

0.908 

0.916 



(2) Systematic variance, Var[E[Y,IXJ]: 

Var[E[Y,/XJJ=Var[exp(/31+/J2 X;2 +fJ;,{,JJ= exp(2/31 ) Var[exp(/32X;2 + /J;X;;)]where 
Var[exp(f}2 X; 2 + /3:)(;)] =E[exp(2f}2X;2 + 2f};X;3 )]- {E[exp(f}2 X;2 + f};)i; 3 ))2. Using the 
relationships that E[exp(f}2X;i)J={exp(f}2)-exp(-f}2)}/2f}2 and E{exp(f}3Xi3)]=0.3exp(-/JJ + 
0.4 +0.3exp(f}3 ), it can be shown that Var[E[Y,IXJ] is equal to 28.1063 and 11,338.9 for 
p1=4 and p1=7, respectively. 

Therefore, for the perfect model, the R2 values are 0.339 and 0.911, respectively, for p 1=4 and 
p1=7. In the last section, although it was not shown that the R2 value oflognormal regression 
models also depends on its mean level, from the derivation of R2 value for the perfect model, it 
can be seen that it is indeed the case. 

The second illustration performed under the Poisson regression model uses the following 
form: 

6 

whereµ; =E[Y; [xJ =exp(};Pixij) , i=l,2, ... ,n. 
j•I 

(28) 

where the covariate x;1 is a dummy variable equal to l (i.e., P 1 is the intercept); xiJ,j=2, .. . , 6, are 
the observed values of random variable Xii ,}=2, ... ,6, which are iid as N(0, 1). The parameters f}1 
is equal to 0.4 for j=2,3, ... ,6, which means that xiJ,}=2, ... ,6, have the same effect on the 
conditional mean of Y, and in that sense are equally important. In addition, three different values 
of f}1 (/31 = -2.0, -1.0, and 1.0) are used to show the effect of different mean levels on R2 under 
the Poisson model. 

To see how the R2 value increases when the covariate is added to the model one at a time, 
Eq. (21) is used to compute the R2 value for models with (intercept only), (intercept+ l 
covariate), (intercept+ 2 covariates), (intercept+ 3 covariates), (intercept+ 4 covariates), and 
(intercept+ 5 covariates). Note that parameters under each model are assumed to be correctly 
estimated with no sampling errors or bias. The R2 values under different numbers of covariates 
and mean levels are shown in figure 6 and table 5. Using the fact that exp(X) are lognormally 
distributed, the unconditional mean levels of Y, for /31 of -2.0, -1.0, and 1.0, are 0.2, 0.55, and 
4.1, respectively. Specifically, these means are computed as follows: E[YJ=E[E[Y;IXJJ= exp( 
f}1 + (5/2) x (0.4)2). For any number of covariates, as mean level increases, the R 2 value increases. 
Also, for a particular mean level, as the number of covariates increases, the R2 value increases. 
However, it can be seen from figure 6 that the increase is not linear. Since xiJ,j=2, ... ,6, in this 
simulation are independent and equally important, it is desirable that these increases be linear. 
The reason that the increase is nonlinear is that the mean functionµ; is a nonlinear (exponential) 
function of the covariates. [Recall that, in chapter 2, the normal linear regression example which 
has a linear, additive mean function showed a linear increase in the R2 value when an additional 
covariate is added to the model (figure 2).] Therefore, this demonstration shows that R2 has the 
desirable linear increase property only under linear and additive mean functions. Accident 
prediction models are, however, nonlinear and interactive in nature. 
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True Model: Yi ~ Poisson(µ i ) 
µ i = exp( '31 + 0.4x i2+ 0.4x iJ + 0.4xi4+ 0.4xi5+ 0.4xi6 ) 

xi2, xi3 , X i4' X iS, X i6 ~ iid N(0,1) 
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Figure 6. R2 values of a Poisson model at three mean levels. 



Table 5. R2 values of a Poisson regression model at three mean levels. 

True Model: Y;- Poisson(µJ 
µi = exp({J1 + 0.4x,2 + 0.4x,3 +0.4x14 +0.4x;5 + 0.4x;J 

x;2, x;3, x;4, x;5, x;6 - iid N(0,1) 

Number of Covariates 
P,=l P,=-1 

Included (except the intercept) 

0 0 0 

1 0.062 0.030 

2 0.159 0.077 

3 0.304 0.147 

4 0.519 0.251 

5 0.832 0.402 

50 

Pi=-2 

0 

0.015 

0.038 

0.072 

0.124 

0.198 



NEGATIVE BINOMIAL REGRESSION MODELS 

Same as in the Poisson regression illustration above, it can also be shown that the R2 value 
of NB regression models is dependent on mean level and is subject to sampling errors. Here, 
another factor, overdispersion parameter o:, that also influences the R2 value of a NB regression 
model is considered. The simulated NB regression model has the following form: 

Y, - NB(µ;; rt} (29) 
whereµ; = E[Y, \ xJ = exp( P,xa + P2 x 12 + P1 x1), i=l,2, ... ,n. 

The covariate Xu is a dummy variable equal to l (i.e., p I is the intercept); x;2 is the observed 
value ofrandom variable .X,2, where i=J,2, ... ,n, which are iid as U[-1,1]; and X;3 is the observed 
value ofrandom variable X,3, where i= 1,2, ... ,n, which are iid and have probabilities of 0.3, 0.4, 
and 0.3 of being observed to be -1, 0, l, respectively. The conditional variance of Y; given x; is 
a quadratic function of its conditional me1U1: µ; +aµ/ (see table l). The regression parameters p 
are set as follows: p1=l .0, P2=0.5, and p3=0.5. Again, X;2 and .X,1 are independent of each other. 
Two levels of overdispersion parameter o: are considered: o:=0.1 and o:=1.0. 

Using the same simulation procedures as in the Poisson illustration earlier, figure 7 shows 
the distribution of 5,000 R2 values for different sample sizes from the NB regression models. 
Detailed statistics of the R2 values are given in table 6. On average, the model with a higher 
overdispersion parameter value has lower R2 values. The R2 values as n=oo, computed from Eq. 
(21), are 0.345 and 0.132 for o:=0.1 and cx=l .0, respectively. 

The second illustration is based on simulated data obtained from two actual NB regression 
models that were previously developed in an FHW A project for truck accidents [Miaou et al., 
1993]. These two models are presented in table 7. These models were developed using data from 
Utah, one of the HSIS States. Both models are developed for road sections: one for rural 
Interstate highway and one for urban Interstate and freeway. Number oflarge trucks involved in 
accidents, traffic condition (e.g., AADT and percent trucks), and roadway geometric design data 
from 1985 to 1989 were used to develop the models. The time period considered in this study 
was 1 year, which means that the same road section, even if nothing had changed, was 
considered as five independent sections: one for each year from 1985 to 1989. This allowed the 
year-to-year changes on highway geometric design and traffic conditions to be considered in the 
model. There were a total of 8,263 and 2,810 section-years, respectively, for the rural Interstate 
and urban Interstate and freeway. The average number of trucks involved in accident per 
section-year is about 0.2 and 0. 7 truck accident involvements per section-year, respectively. 
Detailed description of the data, descriptive statistics of each variable, and variable definitions 
can be found in Miaou et al. [1993]. Note that the fixed-time effects described earlier in chapter 
2 were considered in both models. 

The Poisson regression models developed from the same data sets are also presented in 
table 7 for comparison purpose. It was suggested that NB regression models were more 
appropriate for the studied data because of the omitted variable problem. 
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Table 6. Statistics ofR2 values of 5,000 simulation runs from two negative binomial regression models at different sample sizes. 

(a) Negative Binomial Regression Model: Y; -NB(µ;,«) 
µ; = exp(]. Ox,, + 0. 5x;2 +0. 5x;), a: =0.1 

X;1 =l, x;2 - iid U{-1,1}, x;1 = -1, 0, 1 with probability 0.3, 0.4, 0.3, respectively. 

Statistics of R2 Values n=50 n=l00 n=200 n=500 n=l,000 n=2,000 n=3,500 

Mean 0.383 0.339 0.319 0.355 0.355 0.346 0.345 

Standard Deviation 0.117 0.079 0.056 0.036 0.029 0.025 0.014 

Coeff. of Skewness 0.072 0.100 0.232 0.057 2.214 7.01 l l.ll0 

0.'S Percentile 0.104 0.145 0.188 0.261 0.289 0.287 0.309 

99.5 Percentile 0.674 0.545 0.470 0.448 0.427 0.402 0.380 

(b) Same model as in (a) except that a: =1.0 

Statistics ofR2 Values n=50 n=IO0 n=200 n=500 n=l,000 n=2,000 n=3,500 

Mean 0.165 0.138 0.124 0.138 0.138 0.132 0.132 

Standard Deviation 0.112 0.069 0.047 0.031 0.027 0.026 0.013 

Skewness Coeff. 0.527 0.653 0.611 0.221 5.329 13.944 2.449 

0.5 Percentile -0.056 0.012 0.035 0.065 0.083 0.085 0.101 

99.5 Percentile 0.488 0.348 0.266 0.228 0.207 0.183 0.164 

n=5,000 

0.350 

0.017 

l l.942 

0.319 

0.384 

n=5,000 

0.134 

0.018 

21.269 

0.106 

0.166 



Table 7. Estimated parameters of the Poisson and negative binomial regression models for truck 
accident involvements. 

Rural Interstate Urban Interstate & Freeway 
/8,263 Section-Years) (2,810 Section-Years) 

Model Parameter Poisson N eRative Binomial Poisson Neutive Binomial 

P, -0.431762 -0.265214 -0.947077 -0.221901 
Dummv interceot I ±0.360;-1.20) I ±0.349;-0.76) 1±0.665:-1.42) I ±0.496;-0.451 

P, -0.183853 -0.204387 -0.385215 -0.389702 
Dummy variable for 1986 (±0.108;-1.71) I ±0.104;-1.96) ( ±0.125;-3.08) ( ±0.102;-3.85) 

P, -0.161461 -0.139613 -0.582372 -0.551033 
Dummy variable for 1987 (±0.106;-1.52) (±0.104;-l.35) ( ±0.130;-4.51) ( ±0.103;-5.34) 

P, -0.111511 -0.083996 -0.292152 -0.231267 
Durnrnv variable for 1988 (±0.106;-1.05) r ±0.104;-0.80) ( ±0.118;-2.48) r ±0.096;-2.39) 

P, -0.311155 -0.311454 -0.273012 -0.230436 
Durnrnv variable for 1989 ( ±0. ll0·-2.83) (±0. 108;-2.90) I ±0.115;-2.39) I ±0.095;-2.43) 

P1, ------ ------ 1.40603 1.30802 
Dummy variable for urban freeways I ±0.210;6.68) (±0.161;8.14) 

P, 0.024400 0.024621 0.046010 0.050161 
AADT oer lane (IO'\ I ±0.019· l.27) ( ±0.020· 1.22\ 1±0.010·4.75\ 1±0.008;6.30) 

p,, ------ ------ 0.124950 0.088493 
Number of lanes (4 to 8 lanes) I ±0.053;2.34) r ±0.040;2.23) 

P, 0.088861 0.073650 0.016375 0.053897 
Horizontal curvature I ±0.035;2.51) (±0.032;2.31) ( ±0.062;0.26) I ±0.044; 1.24) 

p,, 0.234209 0.277068 0.128738 0.049554 
Horizontal curvature x Length of original (±0.105;2.22) (±0.100;2.77) ( ±0.152;0.85) ( ±0.112;0.44) 
curve 

P, 0.077815 0.086784 0.101143 0.093379 
Vertical erade ( ±0.035;2.25) (±0.032;2.72) I ±0.056; I. 78) (±0.036;2.63) 

p,. 0.033973 0.027904 ------ ------
Vertical Rrade x Len•th of ori~inal grade r ±0.019; 1.81) r ±0.019: 1.45) 

P,1 0.085763 0.070920 0.153900 0.083181 
Deviation of inside shoulder width per (±0.045;1.90) (±0.044;1.61) (±0.070;2.20) (±0,052;1.59) 
direction from 12 ft 

P1, -0.025233 -0.026532 -0.093899 -0.084985 
Percent Trucks (e.2., JO) (±0.005;-4,70) ( ±0.005;-4.96) ( ±0.014;-6.82) (±0.010;-8.57) 

Overdispersion Parameter (a:) 0.94652 0.58397 
(±0.107;8.89) ( ±0.064;9.07) 

T: (Score test for overdisoersion) 13.49 • 1.96 20.12 • 1.96 

LfR\ (-loelikelihood function) -3771.0 -3682.4 -2741.9 -2620,8 

Akaike Information Criterion Value 7566.0 7390.7 5509.7 5269.5 

Expected vs. Observed Total Truck 1,644.3 1,702.6 1,903.9 2,039.5 
Accident Involvements (5-vcar) 1,643.0 1,643.0 1,904.0 1,904.0 

Notes: (!) From Miaou et al. [1993]. . 
(2) Values in parentheses are (adjusted) standard deviation and I-statistics of the parameters above. 
(3) ----- Not included in the model. 
(4) I mi = 1.6l km, I ft = 0.3048 m. 

' \ 

54 



For each of the two roadway classes, by assuming that the developed NB regression model 
is the true model, simulated truck accident involvement frequencies are generated for each 
section-year. Model parameters are then reestimated using the simulated frequencies and 
associated covariates. Estimated conditional mean of each section-year is computed from the 
reestimated model, and the R2 value is calculated. This process is repeated 5,000 times, and 
5,000 R2 values are obtained. The descriptive statistics of these R2 values are presented in table 
8. The average R2 value is 0.230 and 0.412 for the rural Interstate and urban Interstate and 
freeway, respectively. As expected, models for the urban Interstate and freeway have 
consistently higher R2 values than those of the rural Interstate. This is mainly because of the fact 
that the urban Interstate and freeway has a higher overall mean level than that of the rural 
Interstate (about 0.7 vs. 0.2 truck accident involvements per section-year). 

SUMMARY 

The R2 statistic is a measure of the percentage of the unconditional variance of dependent 
variable that is explainable by the available covariates. It is a meaningful goodness-of-fit 
measure for normal regression models that have a linear and additive mean function and that the 
conditional variance of the dependent variable is not a function of the conditional mean. Even 
under such linear models, a perfect model can have an R2 value that is substantially less than 1, if 
the random variation of the data is relatively large when compared to the systematic variation. 
In theory, if one can estimate the random variance with reasonable accuracy, one can compute R2 

statistic with the random variance being removed from the total unconditional variance of the 
dependent variable. In such cases, one can indeed reach an R2 value close to 1 when a perfect 
model is obtained. Unfortunately, for most of the real-world problems with multiple covariates, 
the estimate ofrandom variance can not be made because it is not possible to distinguish the 
systematic variance caused by omitted variables from those caused by the random variance. 

As in all statistics, R2 statistic is subjected to sampling variation (or sampling error) 
because of the use of finite samples. The larger the sample size, the smaller the sampling error 
can be expected. This means that the larger the sample size, the better one can trust the R2 value 
to decide the goodness-of-fit of the developed models. This fact has, however, not been 
emphasized by traffic safety engineers and researchers when assessing the goodness-of-fit of 
accident prediction models using R2• 

The functional form of the commonly accepted candidate accident prediction models, such 
as the Poisson and NB regression models, are nonlinear and multiplicative. In addition, the 
Poisson and NB distributional assumptions imply that the conditional variance of the dependent 
variable is a function of its conditional mean. Under such models, the R2 statistic has the 
following three undesirable properties: (1) As in normal linear regression models, a perfect 
model can have an R2 value that is substantially less than 1; (2) the R2 statistic is a function of the 
mean of the dependent variable; a high rgean level would automatically result in a high R2 value 
regardless of the goodness-of-fit of the model; and (3) when independent and equally important 
covariates are selected and added to the model one at a time, the increase in the R2 value is not 
linear. These undesirable properties have created potential pitfalls for using R2 (or R2

) to assess 
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Table 8. Statistics ofR2 values of 5,000 simulation runs using two actual negative binomial 
regression models for truck accidents. 

Statistics of R2 Values Model for Rural Interstate Model for Urban Interstate & Freeway 
(n=8,263 section-years) (n=2,810 section-years) 

Mean 0.230 0.412 

Standard Deviation 0.019 0.028 

Skewness Coeff. -0.147 -0.070 

0.5 Percentile 0.174 0.339 

99. 5 Percentile 0.278 0.485 
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the quality of a model and to make the kind of decisions and comparisons discussed in chapter 1 
by traffic safety engineers and researchers. 

In light of the fact that appropriate accident prediction models are typically nonlinear and 
interactive, there is a need to develop alternative measures to evaluate the goodness-of-fit of 
accident prediction models. Three desirable properties of alternative measures are (1) [O, 1] 
bound property; (2) proportional increase property; and (3) invariant with respect to the mean 
property. Basically, [0,1] bound property says that one would like to have a value of O ifno 
covariate ( except the intercept term) is included in the model and a value of 1 if all the necessary 
covariates are included. Proportional increase property says that, if all covariates are 
independent and equally important, then when one selects and adds these covariates to the model 
one at a time, the increase in value should be the same for each covariate regardless of their order 
of selection. Invariant with respect to the mean property says that the value of the criterion will 
not change by simply increasing or decreasing the value of the intercept term in the model. 

In chapter 5, simulations will be conducted to examine the performance of three alternative 
goodness-of-fit measures in terms of the~e three properties. These three alternative criteria are 
developed on the basis of the Poisson concept described in chapter 2. This concept essentially 
says that if one can collect all the necessary variables to explain all the variation of accident 
frequencies among sites and time intervals, then conditional on these variables, the accident 
frequencies are Poisson distributed. Using this concept, one can first estimate the contribution of 
random variation in accident data and then remove the estimated random variation from the total 
variation to obtain an estimate of the total systematic variation which is explainable. 
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4. AIC AND OTHER GOODNESS-OF-FIT CRITERIA 

In the last 20 years, a model selection criterion called AIC has been developed by 
statisticians [see e.g., Sakamoto, et al., 1986; Bozdogan, 1987]. The capability of this criterion to 
select the correct models has traditionally been shown in a linear regression or time series 
context in statistical literature [e.g., Hurvich and Tsai, 1989] and recently in a logistic regression 
context [Hurvich and Tsai, 1994]. Also, this criterion has been coded as one of the outputs in 
several statistical software packages. However, few traffic safety engineers and researchers are 
aware of the development of this criterion. 

The second objective of this study was therefore to bring the development of AIC to the 
attention of traffic safety engineers and researchers. This objective was to be achieved through 
some illustrations of the power of AIC-based criteria in model selection. Again, the illustrations 
were to be carried out using computer simulations. It was hoped that through the simulation 
studies the strengths and limitations of AIC-based criteria in evaluating the goodness-of-fit of 
accident prediction models could become clearer to traffic safety engineers and researchers. 
Specifically, the Poisson regression model was used as the ground truth accident prediction 
model, based on which simulated data were generated and which tests of model selection 
capability were conducted. In addition to AIC, other criteria such as likelihood-ratio based 
criterion and Pearson's X2 statistics were also considered in the illustration for comparison 
purpose. To the best of this author's knowledge, tests of model selection capability of AIC have 
not been conducted specifically for the Poisson and NB regression models. 

As in earlier chapters, accident prediction models refer to the totality of the model, which 
includes the probability function P(.), the form of the mean function (i.e., functional form)/(.), 
regression parameters /J, and the covariates X's which are selected for inclusion in the mean 
function f(.). Conceptually, the probability function, functional form, regression parameters, 
and covariates can be regarded as four key elements that characterize a model. Candidate models 
can be different from each other and from the true model in any of these four elements. Ideally, 
tests of model selection capability can be conducted for candidate models that are different in any 
of these four elements. In practice, these tests have typically been limited to the comparison of 
models with the same type of probability function and functional form. Under such tests, a 
model selection test is reduced to a variable selection test. (Recall that, for a given data set and a 
selected set of variables, the parameters of each candidate model are estimated based on a 
predetermined statistical estimation method such as the ML estimation method.) In this study, 
tests were performed for the Poisson and NB regression models with the same functional form, 
but different numbers of covariates. Since the Poisson distribution can be considered as a 
limiting distribution of the NB distribution (as discussed in chapter 2), the tests conducted in this 
study can also be regarded as comparing models of the same type of probability function. 
However, this should not be considered a limitation of the tests conducted in this study because 
the Poisson and NB distributions have been widely accepted in recent years for developing 
accident prediction models. 

Most of the variable selection tests have been conducted by statisticians under the 
situation where the correct model, which has all the correct covariates in the model, is among a 
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set of candidate models considered by the modeler. The test is conducted by first generating a 
data set of a specific sample size, say n= 100, from the true model using computer simulation 
techniques. Given the simulated data, the parameters of each candidate model, including the 
correct model, are estimated based on an appropriate statistical estimation method, e.g., the ML 
estimation method. The value of each criterion is then calculated for each estimated candidate 
model using the simulated data. For a specific criterion, the best fitted model among all 
estimated candidate models is the one which has the best value calculated under the criterion, 
e.g., the one with the highest value in adjusted R2 when adjusted R2 is the criterion considered or 
the lowest value in AIC when AIC is considered. If the best fitted model identified by the 
criterion is the correct model, then the use of this criterion to select variable is considered a 
success. The same experiment with the same sample size is repeated for a number of times, e.g., 
m= I 00. Thus, each experiment has a unique data set of the same sample size which represents 
one possible realization generated from the true model. Finally, the performance of each 
criterion is measured in terms of the relative frequency the correct model is identified as the best 
fitted model, e.g., 70 successes out of 100 experiments. In general, the best criterion among all 
the criteria considered is the one that has the highest relative frequency of successes. In 
statistical literature, there has been a lot of emphasis on evaluating the performance of these 
criteria under small sample sizes, e.g., n = IO, 30, 50, 100, or 200. The difficulty in developing 
accident prediction models is, however, not due to a small sample size, but rather low means and 
unavailability of certain important covariates. 

It is important to point out that the experiment conducted under the situation where the 
correct model is among a set of candidate models considered by the modeler is not very realistic 
for many real-world observational studies. The reason is that omitted variables, either 
unavailable or unobservable, are almost inevitable in these studies. For accident prediction 
models, as discussed in chapter 2, variables pertaining to site-specific driver and vehicle 
characteristics are unlikely to be available to the modeler and are almost always omitted from the 
model. Therefore, the results of the model selection tests performed under such a situation do 
not seem to be particularly meaningful for the purpose of this study. What the analysts are 
interested in knowing is the ability of these criteria to select the best model(s) under the situation 
where some of the relevant variables are omitted from all candidate models. In this chapter, 
variable selection tests under both situations will be illustrated. 

This chapter is organized as follows: First, a brief description of the concept behind AIC 
is given. Second, a list of criteria that are used in the variable selection tests in the following two 
sections is presented. Third, the results of the first variable selection test where the correct 
model is among a set of candidate models considered by the modeler are described. Fourth, the 
results of the second test where some relevant variables are omitted from all candidate models 
are presented. Based on the simulation results, the last section gives some recommendations for 
future research in variable selection. .· ' 
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CONCEPT OF AIC 

Let the true model of the ith observation be expressed as a probability distribution P(Y; = 
y,), which has a mean functionµ;'= f(X. Z;; /3') where}( and Z; are covariates and p• is the true 
parameter vector associated with the covariates. Further, suppose that a given data set, 
y;. i =1,2, ... ,n, which are generated from the true model, are available for analysis. Now, let a 
candidate model be expressed as Q(r;- Y;) which has a mean function µ; = g(X;, W;; /3) where}( 
are available covariates, W; are irrelevant covariates, and /3 is the parameter vector associated 
with covariates X;, W; , and any other parameters that may be required. Note that Z; represent 
the variables omitted from the candidate model. In practice, the parameter vector fl needs to be 
estimated from the data. The estimates of /3 and the mean function evaluated under the estimated 
parameter will be denoted by p and fl 

1 
= g(X;, W;; P), respectively. As indicated earlier, the true 

model P(Y,= yJ and a candidate model Q(}'; = y) can be different in many ways, e.g., the 
probability function (P() vs Q()), form of mean function (f() vs g() ), regression parameter 
values (p' vs p) and covariates ( }( ,Z; vs .x;, W;)- Consequently, for a given observation, say 
the ith observation, the two probability models can be different in their mean (i.e.,µ/ vs fl;), 
variance, skewness, and other higher moments. 

It is important to point out that the true model is usually unknown. For certain problems, 
the analysts may have some knowledge of it. For example, as discussed in chapter 2, in 
developing accident prediction models, the analysts generally feel comfortable to assume that 
P(Y;= yJ is Poisson distributed. Also, from engineering judgment and previous experience with 
the accident data, the analysts have some idea on the relative importance of certain traffic and 
geometric design variables. In addition, there seems to be an agreement between safety 
engineers and researchers that the functional form should be of muliplicative types, indicating the 
interactive nature of the effects among the five major factors discussed earlier. As discussed in 
chapter 2, engineering knowledge should play a key role in the determination of functional form 
and initial candidate variable selection. More discussion and an example on roadside accidents 
will be given in chapter 6. 

Conceptually, the R2 goodness-of-fit measure discussed earlier can be regarded as a 
measure of the average distance between y and fl, i.e., averaged over all i. Geometrically, it can 
also be viewed as a measure of the average distance between y and µ ·, plus the average distance 
between µ· and /1;- The former distance relates to the random variance referred to in chapter 3, 
while the latter relates to the unexplained systematic variance. To be more precise, recall that 
the R2 measure is further normalized so that the value is bounded between O and 1. Models with 
shorter average distances or with higher R2 values are favored. Although it is not known, the 
amount of random variance for a given data set is fixed. Therefore, the R2 measure is essentially 
a measure of the average distance between µ· and fl 1, i.e., between the mean of the true model 
and that of the estimated candidate model. Thus, the R2 measure ignores model differences in 
variance, skewness, and other higher moments. 

AIC is originated from an information measure called the Kullback-Leibler (K-L) 
information measure [Sakamoto et al., 1986]. The basic idea of the K-L measure is to measure 
the closeness of the entire distribution of the true model with respect to that of the estimated 
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candidate model. In other words, instead of measuring the distance between two means (i.e., two 
points, geometrically), the K-L information measure attempts to measure the distance between 
two distributions (which are essentially two curves in the continuous distribution case). It goes 
without saying that the closer between the two distributions, the better the fit. Of course, there 
are many ways of measuring the closeness of two distributions. The reasons that the K-L 
information measure is widely accepted by statisticians include: (1) it is derivable from minimal 
assumptions; and (2) it possesses several desirable properties [Bozdogan, 1987]. 

The derivation of AIC from the K-L information measure requires the use of 
sophisticated large sample theory in statistics. This author will not attempt to derive AIC from 
the K-L information measure in this report. Instead, only key concepts and assumptions 
pertaining to the derivation will be presented. The readers who are interested in the derivation 
can consult Sakamoto, et al. [1986] and Bozdogan [1987] for details. 

K-L Information Measure 

In this subsection, the K-L information measure will be introduced for continuous 
distributions. The introduction can be easily extended to discrete distributions. 

Let P(y) be the true probability density function and Q(y) be a candidate probability 
model under consideration, where y is a vector of observations: y=(y,, y 1 , ... , Yn/. The K-L 
information measure is defined by: 

I(P,Q):j= P(y)log( P(y))dy 
-= Q(y) 

(30) 

where log denotes the natural logarithm. 

I(P,Q) has three important and basic properties. The first two are: 

(1) I(P,Q) ~ O; and 
(2) I(P,Q) =O if and only if P(y)=Q(y). 

That is, I(P,Q) will always be non-negative and I(P,Q) is equal to zero if and only if the 
candidate model Q(y) is the same as the true model P(y). The third property of the K-L 
information measure is that when Y, are independent, I(P, Q) is additive. Note that even if Y, are 
not independent, an additive property still exists after appropriately conditioning on one another. 
In general, the closer the candidate distribution Q(y) is to the true distribution P(y), the smaller 
the value of I(P, Q). Thus, under the K-L information measure the best candidate model is the 
one that has the smallest value of l(P, Q). 
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Equation (30) can be rewritten as: 

l(P, Q) = 1· P(y) log( P(y)) dy 
-- Q(y) 

= j P(y) log( P(y))dy - j P(y) log(Q(y))dy 

= Constant - E[ log(Q(Y))} 

(31) 

The first term on the right hand side of the second equality is a constant that depends on the true 
distribution P(y) only; while the second term is simply the expression for the expected value of 
the random variable log(Q(Y)). Therefore, to minimize the K-L information measure is 
equivalent to maximizing the expected value of the loglikelihood of Q(Y=y), i.e., E[log(Q(Y))], 
where the expectation is taken over Y. 

To evaluate E[log(Q(Y))J, one needs to know the true distribution P(Y=y). In other 
words, the K-L information measure in its exact form can be used only if the analysts know the 
true model. This is, of course, unrealistic. Another unknown which is not explicitly expressed in 
the discussion is the parameter vector p embedded in the candidate model Q(y). To facilitate the 
following discussion, the parameter vector p will be made explicit by using Q(y[p) in place of 
Q(y). In the same vein, E[log(Q(YP ))] will be used instead of E[log(Q(Y))}. 

Akaike Information Criterion 

To make the K-L information measure operational, the first step taken by statisticians is 
to evaluate the goodness-of-fit of models based on E[log(Q(Y jJ ))] instead of E[log(Q(YP ))], 
where jJ is the ML estimate of the unknown parameter vector p using observations y. To 
evaluate E[log(Q(Y jJ ))], one still needs the true model. The second step is to estimate the true 
model from the observations. Akaike's work relates mainly to the second step. 

To derive AIC, Akaike relied on the following two key assumptions: (1) the sample size 
is very large so that asymptotic statistical theory can be applied; and (2) the parameter vector of 
the candidate model pis a restricted vector of the true parameter vector p•, i.e., one can obtain P 
from p· by setting some of the elements in /f to zero. The crux of Akaike's finding is that the 
loglikelihood function of the candidate model evaluated under iJ using observations, i.e., 
log(Q(y[ p )), is a biased estimate of E[log(Q(Y /J ))}. On average, log(Q(y[ /J )) is larger than 
E[log(Q(Y p ))] by an amount that is about equal to the number of unknown parameters in p, 
say k. Based on this finding, Akaike defined his AIC as follow: 

AJC = -2 x loglike( jJ) • 2 xk (32) 

where iJ is the ML estimate of p, k is the number of unknown parameters in the candidate 
model, and loglike( p) = log(Q(y[ jJ )), which is the loglikelihood function of the candidate 
model evaluated under p using observations. The best candidate model, according to AIC, is 
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the one that has the smallest AIC value. The second term on the right hand side can be 
considered as a penalty for using more parameters (as a result of, e.g., using more covariates). 
Conceptually, AIC can be regarded as a criterion that strikes a balance between bias and random 
errors [Bozdogan, 1987]. Specifically, increasing the number of parameters will reduce bias, but 
it will increase random error. AIC seeks to choose the model that reduces the total error. 

Corrected Akaike Information Criterion {CAIC) 

Through simulation studies, there has been a steady realization for many years that AIC 
has a tendency to select overfitted models as the best models, especially when the sample size is 
small. In the last 10 years or so, there has been a constant effort by statisticians attempting to 
develop a correction for AIC so that it can perform better under small samples [e.g., Bozdogan, 
1987; Hurvich and Tsai, 1989 and 1994]. One version of the correction proposed by Hurvich 
and Tsai [1989, 1994] has been demonstrated to have better model selection capability than AIC 
under small samples. Their corrected AIC has the following form: 

CAIC aAJC, lk(k,J) 
n-k-1 

(33) 

One can see from Eq. (33) that for a fixed k and large n, the second term on the right hand side is 
small and the CAIC is close to the AIC. It is when n is small and k is large that CAIC differs 
from AIC. 

VARIABLE SELECTION CRITERIA CONSIDERED 

The criteria that were used to test variable selection capability in this study include AIC 
and CAIC under both the Poisson and NB regression models, scaled deviance (SD), and 
Pearson's chi-square statistics. In addition, for the NB model, two modified versions of CAIC 
were also considered. The modified versions attempted to take into account the size of the 
dispersion parameter in the NB model. The following is a list of criteria tested: 

(1) R2
: adjusted R2 (see chapter 3). 

(2) AICp0 : AIC under the Poisson model. 
(3) CAICp0 : CAIC under the Poisson model: 
(4) SDp0 : SD under the Poisson model [see McCullagh and Nelder, 1983]; models with 

lower scaled deviance are preferred. 

Scaled deviance is a loglikelihood-ratio based criterion. According to standard statistical 
theory, for a well fitted model, the value of SD should come from a central x2 (i.e., chi
square) distribution with n-k degrees of freedom, denoted by x.2 (n-k). In this study, the 
use of this criterion for variable selection is as follows: For any two candidate models 
Mi1 and Mi2, where j 1 and j2 are integers indicating the numbers of covariates included in 
the two models andj2 is greater thanjl, Mi2 is declared a better model than Mi1 only if 
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the SDp0 of MJ2 is less than that of Mi 1 by at least x2
0_05G2-j 1 ), the critical value of a chi

square distribution with (j2-jl) degrees of freedom at a 5 percent significance level. Note 
that x\_05(1)=3.84, x\ 0l2)=5.99, x\_05(3)=7.81, etc. 

The steps taken in this study to select the best model among a set of candidate models are 
as follows: 

Step 1. 

Step 2. 

Step 3. 

Group the candidate models by the number of covariates included in the 
model; 
Within each group, find the best model, i.e., the one that has the lowest 
value in SDro; denote these best models by M 1, M 2, •··, Mk; and 
Compare SDp0 of M1 and M2, and the better of the two is kept and then 
compared with M3 and so on. 

(5) X2
: Pearson's chi-square statistic (see chapter 3 for definition). 

The same procedure as in SDp0 is used to select the best candidate model. 

(6) CAICNB: CAIC under the NB model. 
(7) CAICNB-log(n): CAIC under the NB model with a modification on the penalty term: 

CAICNB-log(n) = CAICpo, log(n) x a (34) 

where It is the estimated dispersion parameter in the NB model. The additional penalty 
term is intended for penalizing models with large overdispersions and the penalty is 
increased as sample size n increases. When It is equal to zero, indicating no 
overdispersion, this criterion is the same as CAICp0 . 

(8) CAICNB-2: Same as the previous criterion with a different penalty term as follows: 

(35) 

The additional penalty term is now independent of sample size n. 

VARIABLE SELECTION CAPABILITY TEST: ILLUSTRATION ONE 

In this simulation test, the experiment is set up in such a way that the correct model is 
among a set of candidate models considered. Recall that the correct model is the one that has all 
the right covariates in the model. The ground truth model is assumed to be conventional Poisson 
regression models that have exponential mean functions as presented in chapter 2. Candidate 
models include both the Poisson and NB regression models. There are five covariates in the true 
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models; the first covariate being a constant (i.e., an intercept). The four nonconstant covariates 
are assumed to be independent from one another and are simulated as both normal and uniform 
random variables. Candidate models considered include all possible subsets of these four 
covariates. For each true model, 100 realizations(or replications) with different mean levels and 
three sample sizes (n = 50, 100, and 1,000) are simulated and tests are conducted. The 
parameters of all candidate models are estimated using the ML estimation method. 

The model structure of the true models considered is as follows: 

:r;- Poisson(µ) or i=l,2,3, ... ,n. 

and 

i =1,2,3, ... ,n. 

Based on this model structure, different true models are considered and their test results are 
presented as follows: 

(36) 

(37) 

Essentially this true model has only three covariates, x,1, x;2, and Xa (since /34=/35=0). 
Also, X,2 and X;3 are equally important in the sense that they are iid as N (0, I) and have the same 
parameter value of I. It can be shown that the unconditional mean and variance of Y; under this 
true model are E[ 1';]=7.39 and Var[f,] =348.83, respectively. 

The test results from the simulations are presented by criterion in table 9. The first 
column on the left is a list of all 15 candidate models for each sample size. For example, the 
model denoted as 1,2,3 is a candidate model that includes covariates X,1' X,2, and X,3, and model 
1,2,3,4,5 is a model which includes all covariates. Since the true model includes covariates xi/, 
x,2, and xa, the correct model is candidate model 1,2,3. The numbers in columns 2 to 9 indicate 
the number of times (out of 100 replications) the candidate model on the first column was 
selected as the best fitted model under each criterion. For example, for sample size n=50, the 
criterion AICp0 has identified model 1,2,3 as the best fitted model 67 times out of 100 tests. For 
this example, since model 1,2,3 is the correct model, the success rate is therefore 67 percent. 

Several observations can be made from this table: 

(I) Under this particular true model, SDpo is a clear winner for all three sample sizes. The 
success rates are between 88 percent and 90 percent. 

(2) X2
, AICpo, and CAICp0 are all performing reasonably well, with success rates above 70 

percent in most cases. 
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Table 9. Frequencies of models selected by various criteria in 100 replications: True Model # 1. 

True Model: Y,- Poisson(µ,), whereµ,= E[Y, Ix]= exp(PiXu +PiX12 + P,xi3 +P,xu+P;:x,s); xu=I, X;1, X;J. X;4'Xi, 
are iidasN(O,I); and P,=l, P2=P 3 =1, P4=Ps=O. (E[Y;}=7.39, Var[Y1}=348.83) 

Models & Sample Size (n) Adj R' AJC,,, CAIC"' so., X' CAI½, CAIC,,,•log(n) CAIC,,,-2 

n = 50 
1,2 
1,3 
1,4 
1,5 

1,2,3 (Correct Model) 24 67 79 90 81 47 47 47 
1,2,4 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 28 16 9 5 7 16 16 16 
1,2,3,5 27 15 1 I 4 12 36 36 36 
1,2,4,5 
1,3,4,5 

1,2,3,4,5 21 2 1 1 I I 1 

n = JOO 
1,2 
1,3 
1,4 
1,5 

1,2,3 (Correct Model) 18 71 74 88 86 40 40 40 
1,2,4 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 19 8 8 4 4 7 7 7 
1,2,3,S 31 18 15 7 9 48 48 48 
1,2,4,S 
1,3,4,5 

1,2,3,4,5 32 3 3 1 I 5 5 5 

n=J,000 
1,2 
1,3 
1,4 
1,5 

1,2,3 (Correct Model) 23 70 70 89 72 24 24 24 
1,2,4 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 27 12 12 4 13 5 5 5 
1,2,3,S 20 B 13 s 9 60 60 60 
1,2,4,5 
1,3,4,5 

1,2,3,4,5 30 5 5 2 6 11 11 11 
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(3) Foi a small sample size of 50, CA1Cp0 does perform better than AI CPO, but as the sample 
size increases the improvement in performance over AICpo decreases rather quickly, 
which is expected. 

(4) When the correct model is not correctly identified, all criteria have the tendency to favor 
larger models that include more covariates than necessary. 

(5) 1i2 performs very poorly. (This is in part because the ML estimation method is used 
instead of the OLS method. Nevertheless, it has been shown clearly in the literature that 
the ML estimation method is a much better method to estimate the parameter under the 
Poisson and NB regression models than the OLS method [McCullagh and Nelder, 1983].) 

(6) There is no difference in performance among the three CAIC criteria under the NB 
model. 

The only difference between this model and the previous model is on x0, the value of 
which drops from I in the previous model to -2 in this model. Since xii is the intercept of the 
model, this change reduces overall mean and variance of Y,. It can be shown that the 
unconditional mean and variance of r; under this true model are now E[ Y;]=0.37 and Var[Y;] 
=0.86, respectively, which are much smaller than the previous model. In developing accident 
prediction models, the analysts are often faced with data sets with very low overall means and, 
therefore, from this perspective this model is more realistic than the previous one. 

The test results from the simulations are presented in table 10. Several interesting 
observations can be made from the table and from the comparison with the previous table. They 
are listed as follows: 

(I) Again, SDp0 is a clear winner for all three sample sizes. The success rate increases from 
79 percent to 94 percent as the sample size increases from 50 to 1,000. This indicates the 
importance of having large samples when the overall mean is low, which is common in 
developing accident prediction models. 

(2) The performance of X2 drops significantly, even under the large sample size of 1,000. 
This is an indication that X2 should not be used for variable selection when the average 
accident frequency per site is low (e.g., less than 1). 

(3) AICp0 and CAICPO are all still performing reasonably well, with success rates above 70 
percent in most cases. This indicates that the performance of AICPO and CAICro is 
relatively unaffected by the mean level of the data. 

(4) Except X2 under n=50, when the correct model is not correctly identified, all oilier 
criteria again have the tendency to favor larger models which include more covariates 
than necessary. This indicates that there are some risk of selecting a model which 
includes unrelated covariates when these criteria are applied. Again, this points up the 
importance of exercising engineering knowledge to identify candidate variables in the 
beginning of the model development (as emphasized in chapter 2). 
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Table 10. Frequencies of models selected by various criteria in 100 replications: True Model #2. 

True Model: Y;- Poisson(µ;), whereµ,= exp(Pi:xu +Pr;i + Pr13 + P.,x,,+ PiX,J; x,,=-2, X,z, X;J, X,,.,X;5 are iid as 
N(O,l); and 11,=1, 1} 2=1},=1, 1} 4=1},=0. (E[Y,]=037, Var[Y,]=0.86) 

Models & Sample Size (n) AdjR' AIC,o CAIC"' SD,o X' CAIC,., CAIC,.,-log(n) CAIC,.,-2 

n=50 

1,2 
1,3 3 4 7 20 5 4 4 
1,4 
1,5 

1,2,3 (Correct Model) 25 66 70 79 47 64 64 64 
1,2,4 
1,2,S 3 
1,3,4 2 2 3 
1,3,5 2 2 3 3 5 3 3 3 
1,4,5 

1,2,3,4 20 14 12 3 12 14 15 15 
1,2,3,5 34 12 9 5 7 13 13 13 
1,2,4,5 
1,3,4,5 1 1 1 1 I 1 

1,2,3,4,S 16 3 1 3 

n=/00 
1,2 2 4 
1,3 
1,4 
1,5 

1,2,3 (Correct Model) 29 74 78 89 54 64 63 63 
1,2,4 1 1 1 
1,2,5 3 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 25 6 4 3 8 8 8 8 
1,2,3,5 14 16 15 5 25 25 26 26 
1,2,4,S 
1,3,4,5 

1,2,3,4,5 29 4 2 I 6 2 2 2 

n=J,000 
1,2 
1,3 
1,4 
1,5 

1,2,3 (Correct Model) 21 70 70 94 48 41 41 41 
1,2,4 
1,2,5 
1,3,4 
1,3,5 1 
1,4,5 

1,2,3,4 26 15 15 2 24 17 17 17 
1,2,3,5 24 14 14 3 15 37 37 37 
1,2,4,5 
1,3,4,5 

1,2,3,4,5 29 1 I 1 12 5 5 5 
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(5) R2 still performs very poorly. 
(6) Again, there is no difference in performance among the three CAIC criteria under the NB 

model. However, their performance improves quite significantly. At present, it is not 
clear why lowering the overall mean and variance would improve the success rate of 
these three criteria. 

This model is similar to True Model #1. The four parameters associated with the 
nonconstant covariates are however changed. The values of these parameters are set in such a 
way that they decrease from 1 to 0: /32=1, /33=0.5, /34=0.25, and /J5=0. This choice of parameter 
values allows the relative importance of these four covariates in explaining the variations of Y; to 
decrease from x;2 to X;s, with X;2 being the most important covariate, X;3 the second important, X;4 

the third, and X;s of no importance. The correct model in this simulation test is model 1,2,3,4. 
However, since f)4 is quite small when compared to /32 and f)3, it is reasonable to accept model 
1,2,3 as a good model. Therefore, in this simulation, a success is declared if model 1,2,3,4 or 
model 1,2,3 is selected. It can be shown that the unconditional mean and variance of Y; under 
this true model are now E[YJ =5.24 and Var[Y;] =74.55, respectively. Therefore, this model has 
about the same overall mean as in the True Model #1, but with significantly lower overall 
variance. 

The test results from the simulations are presented in table 11. One observation can be 
made from the table is that while SDp0 is a winner again, X2 is performing equally well. Except 
R2

, every criterion performs quite well. The main reason is that the true model has a smaller 
random variance. 

The only difference between this model and the previous model is on Xu, the value of 
which drops from I in the previous model to -2 in this model. This change reduces overall mean 
and variance of Y,. It can be shown that the unconditional mean and variance of Y; under this 
true model are now E[ Y;]=0.26 and Var[Y J =0.18, respectively, which are much smaller than 
the previous model. 

The test results from the simulations are presented in table 12. No criterion is 
performing well for n=50 and 100. When n=l,000, SDPO, AICp0 , and CAICp0 perform very 
well. Again, this indicates the importance of having a large sample size when the overall mean is 
very low. Also, as in the second model, the performance of X2 is very poor even under the large 
sample size of 1,000. Again, this clearly suggests that X2 should not be used for variable 
selection when the average accident frequency per site is very low. 
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Table 11. Frequencies of models selected by various criteria in 100 replications: True Model #3. 

True Model: Y;-Poisson(µ;), whereµ;= exp(/J1xil +/J,x;2 + /3~;3 +/J,x,.+/JjX;J; xil=l, X,2, x;,, x;,, x;, are iidas 
N(0,1); and p1=l, p2=l,P1 =0.5, P4=0.25, p5=0. (E[Y;]=S.24, Var[Y;]=74.55) 

Models & Sample Size (n) Adj R' AIC,o CAIC,., SD"' 
: 

X' CAI½B CAl½,;-log(n) CAJC,.8 -2 

n=50 
1,2 
1,3 
1,4 
1,5 

1,2,3 (Good Model) 1 1 3 4 2 2 2 
1,2,4 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 (Correct Model) 54 86 91 94 93 85 85 85 
1,2,3,5 
1,2,4,5 
1,3,4,5 

1,2,3,4,5 46 13 8 3 3 13 13 13 

n=JOO 
1,2 . 

1,3 
1,4 
1,5 

1,2,3 (Good Model) 3 
1,2,4 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 (Correct Model) 62 90 92 97 98 62 62 62 
1,2,3,5 
1,2,4,5 
1,3,4,5 

1,2,3,4,5 35 10 8 3 2 38 38 38 . 
n=l,000 

1,2 
1,3 
1,4 
1,5 

1,2,3 (Good Model) 
1,2,4 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 (Correct Model) 44 83 83 96 92 69 69 69 
1,2,3,5 
1,2,4,5 
1,3,4,5 

1,2,3,4,5 56 17 17 4 8 31 31 31 
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Table 12. Frequencies of models selected by various criteria in 100 replications: True Model #4. 

True Model: Y; - Poisson(µ;), where µ; = exp( /J1xu + /J:,X;2 + /J,X;3 + /3.xu+ /3:,X,J); x0 =-2, X,2, X0 , X,,,X,j are iid as 
N(O,l); and p1=l, p2=J,p 3 =Q.S, P4=0.25, p5=0. (E[Y;J=0.26, Var[Y;J=0.18) 

Models & Sample Size (n) AdjR' AICro CAIC'° SD"' X' CAIC.,, CAIC.,,-log(n) CAIC.,,-2 

n=50 
1,2 7 22 26 40 30 26 25 26 
1,3 I 7 8 12 16 8 8 8 
1,4 I I I I 
1,5 3 5 I 1 1 

1,2,3 (Good Model) 21 27 27 26 19 28 29 28 
1,2,4 2 6 6 I 5 7 6 7 
1,2,5 8 7 9 4 5 9 9 9 
1,3,4 I I I 
1,3,5 2 I I I 2 I 2 
1,4,5 

1,2,3,4 (Correct Model) 23 20 16 6 7 14 15 14 
1,2,3,5 14 4 3 3 3 3 3 3 
1,2,4,5 5 2 I I 2 I 1 1 
1,3,4,5 1 1 

1,2,3,4,5 17 2 2 I 4 I 2 1 

n=IOO 
1,2 4 10 13 27 17 16 13 13 
1,3 I I 
1,4 I 
1,5 2 

1,2,3 (Good Model) 23 44 45 43 22 37 37 38 
1,2,4 9 13 13 15 22 13 14 14 
1,2,5 2 2 2 I 3 2 2 2 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 (Correct Model) 18 25 21 12 21 25 26 26 
1,2,3,5 14 2 2 0 2 3 3 3 
1,2,4,5 3 2 2 2 5 2 2 2 
1,3,4,5 I 

' 
1,2,3,4,5 26 2 2 0 3 2 3 2 

n=l,000 
1,2 I 
1,3 
1,4 
1,5 

1,2,3 (Good Model) I 21 
1,2,4 4 
1,2,5 I 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 (Correct Model) 54 87 87 96 48 71 70 70 
1,2,3,5 I I I 6 I I I 
1,2,4,5 I 
1,3,4,5 

1,2,3,4,5 42 12 12 3 18 28 29 29 
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True Models #5 to 8: These models correspond to True Models #1 to 4. The only difference is 
that the four nonconstant covariates are now iid as U[-1,1], instead of iid 
as N (0, 1). The four covariates are still independent from one another. 

The test results from the simulations are presented in tables 13-16. The observations 
made from these tables are consistent with those observed in tables 9-12. There is however an 
interesting exception that deserves some discussion. In tables 9-12, the performance of the three 
CAIC criteria under the NB model is very bad when compared with the performance of AlCpo 
and CAICpo• Under these new true models, however, their performances are as well as those of 
AICp0 and CAICpo• This change in performance comes mainly from the change of the 
distribution of covariates. This author's preliminary analysis suggests that it has something to do 
with the difference between the distribution of exp(X) when Xis N(O, 1) and when Xis U[-1, l}. 
Figure 8 illustrates the difference of these two distributions. One plausible reason for this change 
is that the distribution of exp(X) when Xis N(O, 1) can be better approximately by a gamma 
distribution than whenX is U[-1, l}. Recall the discussion on the relationship between NB model 
and gamma distribution in chapter 2. However, more analytical research will be needed for a 
thorough understanding of this observation. 

VARIABLE SELECTION CAPABILITY TEST: ILLUSTRATION TWO 

As indicated earlier, the experiment under the situation that the correct model is among a 
set of candidate models considered by the modeler may not be realistic in developing accident 
prediction models. What would be of more interest to our study is the ability of these criteria to 
select the best model(s) under the situation where some of the relevant variables are omitted from 
all candidate models. That is, the correct model is not among the candidate models considered 
by the modeler. 

It is however not easy to set up a simulation study for such a situation. One has to 
determine, e.g., the importance of the omitted variables relative to other variables in explaining 
the variations of f;, the degree of correlation between omitted variables and available covariates, 
and the distribution of omitted variables. From this author's previous experience in developing 
accident prediction models for road segments, site-specific driver and vehicle variables may be 
responsible for 10 to 40 percent of the variation of the accident frequencies among sites. (Of 
course, traffic volume is the key determinant of the variation.) This author has to admit at this 
point however that there is quite limited data and research on the relative importance of these 
driver and vehicle omitted variables in developing accident prediction models. One thing is 
certain is that for the simulation results to be useful for accident prediction modeling, omitted 
variables should be explaining a significant portion of the variation of Y; in the true model. As 
to the correlation issue, it is this author's judgment at this time that the correlation between site
specific driver and vehicle variables and traffic and geometric design variables are very weak, 
and therefore the use of independent assumption between the available and omitted covariates in 
the simulation is reasonable. As to the distribution of site-specific driver and vehicle variables, 
this author does not have a good idea at this time what the appropriate distributions are to 
simulate these variables. However, it is unlikely to be perfectly normal or uniform. Probably, 
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Table 13. Frequencies of models selected by various criteria in 100 replications: True Model #5. 

True Model: Y;- Poisson(µ), whereµ;= exp(/Jrii + /JiXn + /JriJ + /3,,:C;,+ /3,x,s); x;1=1, x;1, X;3, x;,, .X;5 are iid as 
U{-1, l}; and p1=l, p2=p 3 =I, p4=p 5=0. (E[Y}=3. 75, Var[Y}=J0.21) 

Models & Sample Size (n) AdjR' AICPO CAIC"' SD"' X' CAIC,,. CAIC,,.-log(n) CAIC,,,,-2 

n=50 
1,2 
1,3 
1,4 
1,5 

1,2,3 (Correct Model) 39 73 83 94 93 84 84 84 
1,2,4 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 17 12 10 4 I 9 9 9 
1,2,3,5 26 12 6 2 5 6 6 6 
1,2,4,5 
1,3,4,5 

1,2,3,4,5 18 3 I I 1 I I 

n=JOO 

1,2 
1,3 
1,4 
1,5 

1,2,3 (Correct Model) 27 70 71 93 89 74 74 74 
1,2,4 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 27 12 1 I 2 3 10 10 10 
1,2,3,5 26 17 17 5 7 15 15 15 
1,2,4,5 
1,3,4,5 

1,2,3,4,5 20 I I 1 I I I 

n=J,000 
1,2 
1,3 
1,4 
1,5 

1,2,3 (Correct Model) 33 69 70 90 84 72 72 72 
1,2,4 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 26 19 18 7 II 16 16 16 
1,2,3,5 25 10 10 3 3 IO 10 10 
1,2,4,5 
1,3,4,5 

1,2,3,4,5 16 2 2 2 2 2 2 
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Table 14. Frequencies of models selected by various criteria in 100 replications: True Model #6. 

True Model: r; - Poisson(µ;), where µ, = exp(PiX;, + Pr;2 + P,x13 + p,x,,+ P;x,J; x,,=-2. x;,, X,,. x;,,. X,., are iid as 
U{-1,I]; and p1=I, p2=p,=l, p4=p,=O. (E[Y,J=0.19, Var[Y,J=0.025) 

Models & Sample Size (n) AdJR' AICPO CAI~ SDPO X' CAIC,,. CAIC,,.-log(n) CAIC,,.-2 

n=50 
1,2 7 17 19 31 20 22 20 21 
1,3 10 22 25 36 16 26 22 24 
1,4 2 7 8 9 7 8 8 8 
1,5 I 1 1 1 6 l 1 1 

1,2,3 (Correct Model) 19 31 31 16 19 29 32 30 
1,2,4 11 9 8 3 5 7 8 8 
1,2,5 3 I I I 1 1 
1,3,4 2 4 2 1 2 2 2 2 
1,3,5 4 2 3 1 4 3 3 4 
1,4,5 

1,2,3,4 9 
1,2,3,5 15 6 2 10 
1,2,4,5 5 7 
1,3,4,5 1 

1,2,3,4,5 11 1 l I 3 I 2 1 

n=JOO 
1,2 5 9 11 26 15 13 10 10 
1,3 7 13 14 22 16 14 12 12 
1,4 I 1 I 3 2 1 1 1 
1,5 I 3 

1,2,3 (Correct Model) 15 48. 50 37 27 49 50 51 
1,2,4 4 I 2 I 2 2 2 2 
1,2,5 2 3 3 3 2 3 3 
1,3,4 3 2 3 3 3 3 3 3 
1,3,5 I 2 1 I 1 
1,4,5 2 

1,2,3,4 20 7 4 2 10 4 5 4 
1,2,3,5 22 10 6 5 11 6 7 7 
1,2,4,5 I I 
1,3,4,5 2 3 2 I 2 2 2 

1,2,3,4,5 18 3 3 2 3 4 4 

n=J,000 
1,2 4 
1,3 2 
1,4 
1,5 

1,2,3 (Correct Model) 35 75 75 92 48 75 74 75 
1,2,4 I 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 20 9 9 3 20 9 9 9 
1,2,3,5 24 13 13 4 18 13 14 13 
1,2,4,5 I 
1,3,4,5 1 

1,2,3,4,5 21 3 3 1 s 3 3 3 
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Table 15. Frequencies of models selected by various criteria in 100 replications: True Model #7. 

True Model: Y, - Poisson(µ;), where µ; = exp( P i>=il + PiX;z + P,x;3 + P,xu+ P;:x;s); xii= 1, X,i, X,J', X,4, X;5 are iid as 
U[-1,1]; and p1=I, P2=1,P 3 =0.5, P4=0.25, Ps=O. (E[Y;J=3.36, Var[Y;J=5.09) 

Models & Sample Size ('!) AdjR' AIC,,, CAIC,., SD,o X' CAIC,., CAIC,.,-log(n) CAIC,.,-2 

n=50 

1,2 
1,3 
1,4 
1,5 

1,2,3 (Good Model) 27 36 44 62 65 45 45 45 
1,2,4 2 2 7 5 3 3 3 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 (Correct Model) 42 49 44 28 25 42 42 42 
1,2,3,5 10 9 7 2 3 7 7 7 
1,2,4,5 I 
1,3,4,5 

1,2,3,4,5 18 6 3 1 2 3 3 3 

n=JOO 
1,2 I 
1,3 
1,4 
1,5 

1,2,3 (Good Model) 6 13 18 33 29 19 19 19 
1,2,4 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 (Correct Model) 56 72 67 64 67 68 68 68 
1,2,3,5 3 2 2 I I 1 1 
1,2,4,5 
1,3,4,5 

1,2,3,4,5 35 13 13 2 3 12 12 12 

n=l,000 
1,2 
1,3 
1,4 
1,5 

1,2,3 (Good Model) 
1,2,4 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 (Correct Model) 63 82 82 96 92 82 82 82 
1,2,3,5 
1,2,4,5 
1,3,4,5 

1,2,3,4,5 37 18 18 4 8 18 18 18 
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Table 16. Frequencies of models selected by various criteria in 100 replications: True Model #8. 

True Model: Yi - Poisson(µ.), where µ, = exp(PiXu + /Jrn + Pitu + p,.c,,+ PJX,.J; x,,=-2, x;2, X;3, x;,, X,5 are iid as 
U{-1,1]; and p,=l, 1} 2=1,1}1 =0.5, 1} 4=0.25, 1} 5=0. (E{Yi]=0.17, Var[Yi]=0.0183) 

Models & Sample Size (n) AdjR' AIC.0 CAIC.0 SDPO X' CAIC,,. CAIC,,.-log(n) CAIC,,.-2 

n=50 

1,2 14 43 48 56 21 50 43 43 
1,3 4 10 11 14 18 11 10 11 
1,4 5 6 9 12 6 4 4 
1,5 6 6 6 7 6 6 6 

1,2,3 (Good Model) 13 14 11 7 15 9 13 12 
1,2,4 11 10 7 4 3 7 11 11 
1,2,5 2 2 4 2 7 3 2 2 
1,3,4 2 I I 2 1 1 1 
1,3,5 3 3 3 I 2 3 3 3 
1,4,5 2 I 1 1 1 1 1 

1,2,3,4 (Correct Model) 11 2 1 I 5 2 2 2 
1,2,3,5 17 2 I 3 I 4 4 
1,2,4,5 8 I 4 
1,3,4,5 2 

1,2,3,4,5 11 

n=!OO 
1,2 12 38 41 55 25 42 37 40 
1,3 I 5 6 12 16 7 6 6 
1,4 I 2 2 3 2 2 2 2 
1,5 1 7 7 8 7 7 6 6 

1,2,3 (Good Model) 19 20 18 7 I I 16 18 19 
1,2,4 6 5 5 I 4 5 5 5 
1,2,5 11 5 7 6 8 6 6 7 
1,3,4 3 3 3 3 4 3 3 3 
1,3,5 2 
1,4,5 1 

1,2,3,4 (Correct Model) 9 3 2 1 5 2 3 2 
1,2,3,5 15 7 5 I 5 6 9 6 
1,2,4,5 5 2 I 5 I 2 I 
1,3,4,5 I I 2 

1,2,3,4,5 16 3 3 2 3 3 3 3 

n=l,000 
1,2 14 
1,3 I 
1,4 
1,5 

1,2,3 (Good Model) 7 26 27 48 21 27 27 27 
1,2,4 3 6 
1,2,5 3 
1,3,4 2 
1,3,5 I 
1,4,5 

1,2,3,4 (Correct Model) 59 62 62 46 27 62 62 62 
1,2,3,5 8 7 6 2 10 6 6 6 
1,2,4,5 2 
1,3,4,5 3 

1,2,3,4,5 26 5 5 I 10 5 5 5 
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appropriate distributions would fall inbetween normal and uniform distributions. In the 
following study, independent normal and uniform distributions will continue to be used to 
simulate covariate values. 

and 

The model structure of the true models considered is as follows: 

y; - Poisson(µ) 
Y, -µ µ e , 

or P(Y = y) = P(y) = -'--
1 ' I Yr 

i=l,2,3, ... ,n. 

i =1,2,3, ... ,n. 

(38) 

(39) 

Based on this model structure, two true models are considered. In these two true models, X,6 is 
treated as an omitted variable, i.e., none of the candidate models considered includes X;6 . The 
simulation results are presented as follows: 

Essentially this true model has four covariates, Xi], X;2, X,3 • and X,6 (since /34= /35=0). 
Also, X,2, X 13 , and X,6 are equally important in the sense that they are identically distributed as 
N(0,1) and have the same parameter value of 1. 

The test results from the simulations are presented in table 17. Only the three CAIC 
criteria under the NB model perform well under small sample sizes of 50 and I 00. Performance 
of all criteria decreases as the sample size increases, and all criteria tend to over-select covariates. 

True Model #10: Same as True Model #9 except thatX,2, X,3, X,4, X;5, X;6 are iid as U[-1, 1}. 

The test results from the simulations are presented in table 18. Again, only the three 
CAIC criteria under the NB model perform well. However, this time, the performance of the 
three CAIC criteria under the NB model improves as the sample size increases. Again, this may 
have something to do with the distribution of exp(X) discussed earlier. 

Based on these two limited simulations, this author's current recommendation is to use 
CAICNB as a variable selection criterion for developing accident prediction models. However, 
engineering judgment should be exercised to identify candidate variables. The key is not to 
include variables that are likely to be unrelated with Y, from the engineering standpoint. In 
addition, use other statistics, such as the t-statistic mentioned in chapters 1 and 2, to help 
determine the importance of each variable. Another suggestion is that instead of selecting the 
candidate model that has the lowest CAICNB, one should also consider those candidate models 
that are compatible. For example, one should also look into those models that have CAICNB 
values not greater than three to five of the CAICNB value of the best model. 
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Table 17. Frequencies of models selected by various criteria in 100 replications: True Model #9. 

True Model: Yi - Poisson(µ;), where µ; = exp( f)1xu + /JiX,2 + /J,X,1 + /3.xu+ f),x15+ /3.iC,rJ; xi!= 1, X,2, X.1, x;,, X,5, x;. are 
iidasN(O,l); p1=!, P2=P 3 =1, P4=P 5=0, P6=1; andx,6 is an omitted variable. 

Models & Sample Size (n) Adj R' AIC"" CAICro SDro X' CAIC,,,, CA!C,,,,-log(n) CAIC,.,-2 

n=50 
1,2 
1,3 
1,4 
1,5 

1,2,3 (Best Model) 40 19 24 39 12 86 82 85 
1,2,4 
1,2,5 
1,3,4 5 
1,3,5 
1,4,5 

1,2,3,4 1 27 28 20 76 13 17 14 
1,2,3,5 56 28 35 34 
1,2,4,5 
1,3,4,5 6 

1,2,3,4,5 3 26 13 7 1 I I 1 

n=JOO 
1,2 
1,3 
1,4 
1,5 

1,2,3 (Best Model) 78 77 77 
1,2,4 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 9 9 9 
1,2,3,5 98 83 84 96 30 13 14 14 
1,2,4,5 
1,3,4,5 

1,2,3,4,5 2 17 16 4 70 

n=l,000 
1,2 
1,3 
1,4 
1,5 

1,2,3 (Best Model) 27 36 29 
1,2,4 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 99 I 
1,2,3,5 73 64 71 
1,2,4,5 
1,3,4,5 

1,2,3,4,5 1 100 100 100 99 
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Table 18. Frequencies of models selected by various criteria in 100 replications:True Model #10. 

True Model: Y, ~ Poisson(µ.), where µ; = exp(/J1x,1 + /J;X,2 + /Jr,3 + /J.xu+/J,x,5+ /J,;x,,); x,,=J, X;2, X;,, X;4, X;5, X;6 are 
iid as U[-1, J]; p1=l, p2=p 3 =l, P4=P 5=0, p0=I; and x,6 is an omitted variable. 

Models & Sample Size (n) Adj R' AIC,., CAICro SDro X' CAIC,., CAIC,.8 -log(n) CAICN8-2 

n=50 
1,2 
1,3 
1,4 
1,5 

1,2,3 (Best Model) I 7 36 35 36 
1,2,4 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 1 5 8 12 34 22 23 22 
1,2,3,5 2 I I 17 24 26 31 31 31 
1,2,4,5 
1,3,4,5 6 

1,2,3,4,5 97 84 75 63 33 II 11 11 

n=IOO 
1,2 
1,3 
1,4 
1,5 

1,2,3 (Best Model) 23 26 29 52 43 57 57 57 
1,2,4 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 26 15 14 6 17 4 4 4 
1,2,3,5 28 40 43 39 23 39 39 39 
1,2,4,5 
1,3,4,5 

1,2,3,4,5 23 19 14 3 17 

n=J,000 
1,2 
1,3 
1,4 
1,5 

1,2,3 (Best Model) 38 34 34 57 46 71 71 71 
1,2,4 
1,2,5 
1,3,4 
1,3,5 
1,4,5 

1,2,3,4 46 45 45 35 32 23 23 23 
1,2,3,5 8 10 10 6 13 5 5 5 
1,2,4,5 
1,3,4,5 

1,2,3,4,5 8 11 11 2 9 I I I 
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RECOMMENDATIONS FOR FUTURE RESEARCH 

Although the simulations conducted in this study were quite limited in its coverage, 
several interesting results have been found and reported. The simulations confirmed this author's 
suspicion that the results of statisticians' experiments under the situation where the correct model 
is among a set of candidate models considered by the modeler are not appropriate for use in 
developing accident prediction models. A more appropriate situation that needs to be tested is 
the ability of the goodness-of-fit criteria to select the best model(s) when some of the relevant 
variables are omitted from all candidate models. This suggests the importance of furthering the 
research along the line of the experiments conducted in the last section. More systematic 
simulation studies than those reported in the last section should be planned. In addition, tests 
should include data sets with very low means, and distributions other than normal and uniform 
should be considered for simulating omitted variables. Another dimension of the simulation that 
may be of interest to this study is to allow different degrees of correlation among simulated 
covariates. 

An interesting observation made in this simulation study is that the performance of the 
three CAIC criteria under the NB model is very dependent on the distribution of covariates. An 
analytical study is recommended for a thorough understanding of this observation. 
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5. SOME ALTERNATIVE GOODNESS-OF-FIT CRITERIA 

As suggested in chapter 3, a desirable goodness-of-fit criterion, which can be used to 
make some of the decisions and comparisons described in chapter 1, should have at least the 
following three properties: (1) [0,1] bound property; (2) proportional increase property; and (3) 
invariant with respect to the mean property. Specifically, one would like to have a criterion that 
is bounded between zero and 1, a value of zero indicating no covariate is included and a value 
of 1 indicating all necessary covariates are included. In addition, if all covariates are 
independent and equally important, then when one selects and adds these covariates to the model 
one at a time, the increase in the value of this criterion should be the same for each covariate 
regardless of their order of selection. Furthermore, one would like the value of the criterion to be 
unaffected by simply increasing or decreasing the intercept term of the model. 

As shown in chapter 3, R2 does not possess any of these properties in the context of the 
Poisson and NB regression models. The AIC presented in chapter 4 is not normalized and 
therefore unbounded. It is not clear whether AIC has the second and third properties under the 
Poisson and NB regression models. At the time of this study, there was a paper published by 
Fridstr0m et al. [1995] in which five criteria were proposed for evaluating the goodness-of-fit of 
accident prediction models. The proposed criteria were developed by modifying existing criteria, 
such as R2 and scaled deviance, to achieve some degree of [O, 1] bound property. It is not clear 
how these criteria would actually perform in terms of the three properties discussed under the 
type of Poisson and NB regression models that are typically used in developing accident 
prediction models. Also, the sampling property of these modified criteria was not studied, 
especially, sampling errors under small and medium samples. 

In this study, the performance of three alternative goodness-of-fit criteria are examined in 
terms of the three properties discussed above. Simulation method is again used as a tool to gain 
some insights on their performance. The author did not have the opportunity to examine the 
criteria proposed by Fridstrnm et al. [1995]. However, it appears that the first two alternative 
criteria that this author examined are very similar to some of the criteria they proposed. Again, 
as in other chapters, the study reported here is intended to be exploratory and illustrative in 
nature. Furthermore, because of resource limitations, this study only examined the performance 
of these three alternative criteria under large samples. 

ALTERNATIVE CRITERIA CONSIDERED 

The main idea behind the development of the three alternative criteria is the Poisson 
concept discussed in chapter 2. The concept says that if the analysts are able to collect all the 
necessary covariates to explain the variation of accident frequencies among sites and time 
intervals, then conditional on these covariates, the accident frequencies are Poisson distributed. 
Another idea used in developing these criteria is the worst model concept. The worst model is 
the one that includes no covariate and therefore has no explaining power on the variation of Y,. 
Using these two ideas, one can derive lower and upper bounds for any criterion of interest, e.g., 
R2 and AIC. These bounds are then used to normalize the criterion of interest so that the 
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normalized criterion would possess the [0,1] bound property. This normalization scheme was 
briefly alluded to in chapter 3 when linear regression models were discussed (see Eq. (25)). 

The three alternative criteria considered in this study are as follows: 

(I) R20 : normalized adjusted R2• 

The concept behind the development of this criterion is to estimate the amount ofrandom 
variance from the data and then remove it from the total variance. Using the Poisson 
concept, where the conditional variance is equal to the conditional mean, a consistent 
estimate ofrandom variance is the sample mean: (llnJE1~1 y,. Note that for a Poisson 
regression model under the ML estimation method, E,: y 1 • E,~1 f, is guaranteed, where j>1 

is the estimate of the conditional mean of Y, from an estimated candidate model (which 
was denoted as Jl1 in some of the chapters). Similar to Eq. (25), we can define a 
normalized adjusted R2 as follow: 

} n } n 

-E(y,-y)2 - -EY, 
n-l,.1 n,.1 

(40) 

Note that on the right hand side of the equation, the denominator is an estimate of the 
total systematic variance ( or explainable variance) and the numerator is the total 
systematic variance unexplained by the candidate model. 

(2) R2.: a dispersion parameter-based R2. 

This criterion uses the size of dispersion parameter in the conventional NB regression 
model as a yardstick to determine how well the variance of the data is explained. For a 
given data set, the largest dispersion parameter value is first estimated by fitting the 
observed data r; with an NB distribution (which includes no covariate). The estimated 
dispersion parameter, denoted as 1Xmax• is the upper bound of the dispersion parameter for 
this particular data set. Since the Poisson regression model is a limiting model of the NB 
regression model as ex approaches zero, under the Poisson concept a perfectly specified 
NB regression model should have an a value very close to zero. Therefore, the lower 
bound of the dispersion parameter is zero for any accident data set of interest. Now, for a 
candidate NB regression model, which has some number of covariates in the model, the 
regression parameters as well as the dispersion parameter can be estimated using the ML 
estimation method. Let the estimated dispersion parameter for the candidate model be 
denoted as IX. Given the upper bound 1Xmax, the lower bound zero, and the estimate from 
a candidate model IX, a natural dispersion parameter-based criterion can be devised as: 
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(41) 

This criterion appears to be extremely simple. It has a value of zero when no covariate is 
included in the model and a value of 1 when covariates are perfectly specified. Note 
however that this criterion does not seem to have a good statistical interpretation other 
than the fact that it is indirectly associated with the proportion of unexplained systematic 
variance. Another limitation of this criterion is that it does not reflect the number of 
covariates included in the candidate model. 

(3) R2 
AIC : AIC-based R2

. 

This alternative criterion is based on the CAJCNB criterion, i.e., the CAIC under the NB 
model, discussed in the last chapter. For a given data set, let the value of the CAICNB 
criterion under the worst model (with no covariate) be CAICNB (y), which is the largest 
possible CAIC value. In addition, let the value under an ML estimated candidate model 
be CA/CNB(f, ). Furthermore, let the value under a perfect model be CA/Cp0 (µ;'), where 
µi • is the unknown true mean as before. In theory, CA/CPO(µ;') is the smallest possible 
CAIC value achievable as the sample size approaches 00 • Using these CAJCNB values, an 
AIC-based alternative criterion can be defined as: 

2 CAICNB(j) - CAICNB( y} 
RMc= --------

CAICPJµ) - CAICNB(i) (42) 

Of course, this criterion is not really usable because the true mean µ;•is unknown. To 
make the alternative criterion operational, one needs a good approximation for µ; •. One 
plausible suggestion is to use the EB estimate as follows: 

(43) 

where ct and J; are estimates from the candidate model under consideration. Note that in 
the simulation studies presented in the next section, CAJCPO (µ;') is computable since µ;' 
is known. 
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SIMULATION RESULTS 

The model structure of the true models considered is as follows: 

and 

i=l,2,3, ... ,n. 

Based on this model structure, different true models are considered and their test results are 
presented as follows: 

(44) 

(45) 

True Models #I and #2: X;2, X;3, X;4 , X;s, X,6 are iid as N(O, I); ,ll1 =I for True Model #I and ,ll1 

=-4.8 for True Model #2; and f)2=f)3=,ll4=/Js=JJ6 =1 for both models. 

Essentially these two true models have five independent and equally important 
covariates: X;2, X;3, X;4, X;s, and X;6• Because of the difference in the intercept term, these two 
true models have very distinct mean levels: E[ Y;] is about 33 for True Model #I and about 0.1 
for True Model #2. As indicated before, most of the accident data sets used in developing 
accident prediction models have mean levels within this range. As in chapter 3, one can compute 
random variance and systematic variance for these true models. One can find that, for these two 
models, their random variance is extremely small when compared to their systematic variance. 
This means that, under these true models, a perfect model can achieve an R2 value of close to I. 
In'developing accident prediction models, one does expect the accident data to contain a 
significant amount of random variance. Therefore, these models are not particularly realistic 
models for this study. They can be used however for comparison purposes and as a basis for 
developing more realistic example models. 

As indicated earlier, in this study, the performance of the three alternative criteria are 
studied under large samples only. A sample size of 10,000 is used in the simulation. 

To see how the values of these three alternative criteria increase when the covariate is 
added to the model one at a time, the ML estimation method is used to estimate candidate models 
with (intercept only), (intercept+ 1 covariate), (intercept+ 2 covariates), ... , and (intercept+ 5 
covariates). Under these candidate models, an ideal criterion that possesses the three properties 
discussed earlier would have values of 0, 0.2, 0.4, 0.6, 0.8, and 1.0 as the number of covariates 
increases from zero to five. From the simulation study, the R2 values as well as the values of the 
three alternative criteria under these candidate models are shown in figure 9. 
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The following observations can be made from figure 9 with respect to the three properties 
of interest: 

(I) [0,1] bound property: For these two particular true models, all criteria have good [0,1] 
bound property. 

(2) Prqportiqnal increase property: R2 and R2
n do not have this desired property at both high 

and low mean levels. R2
• performs very well when the mean level is high and reasonable 

when the mean level is low. On the other hand, R2 
AIC performs reasonably well when 

the mean level is low, and reasonable at high mean level. 
(3) Invariant with respect to the mean property: To some extent, all criteria are affected by 

the mean level. R2
• tends to overstate the performance of candidate models when the 

mean level is low, while R2
• tends to understate the performance of candidate models 

when the mean level is high. 

True Models #3 and #8: X;2, X;J, X;4 , X;5 ,X;6 are iidasN(0,1); /J2=/J3=/J4=/J5=/J6 =0.4 for all 
models; and /31 =-3, -2, -0.4, 1, 2, and 3 for True Model #3 through #8, respectively. 

Again, these true models have five independent and equally important covariates: X;2, X 0 , 

X;4, X;5, and X;6• The only difference among these models is in the intercept term, which allows 
them to have different mean levels varying from 0.07 to 30. Also, as a result of their difference 
in the intercept term, they are also different in terms of their random variance over total variance 
ratio. Under a perfect model, these models would have R2 values ranging from about 0.1 to 0.95. 
These models allow one to examine and compare the performance of the three alternative criteria 
under different mean and random variance levels. 

As in the first two simulations, a sample size of I 0,000 is used and candidate models with 
a different number of covariates under the ML estimation method are evaluated. The R2 values as 
well as the values of the three alternative criteria under these candidate models are shown in 
figures 10-12. In these figures, the results from two models of very different mean levels are 
plotted in one figure for comparison purposes. The following observations can be made with 
respect to the three properties of interest ( under large samples): 

(I) [O 1] bqund prnperty: Except R2
, all criteria have good [0,1] bound property. 

(2) Proportional increase property: Overall, R2
n performs quite well at all mean levels. But 

it tends to slightly understate the performance of all candidate models. R2
• performs 

very well at all mean levels. It has a tendency to slightly overstate the performance of 
candidate models when the mean levels are low. As in the first two simulations, R2

A,c 

performs reasonably well when the mean level is low and the performance deteriorates as 
the mean level increases. 

(3) Invariant with respect to the mean property: R2
n performs very well at all mean levels; 

R2. also performs quite well; and R2
Aic does not do well. 
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RECOMMENDATIONS 

Based on the limited simulation results discussed above, R2
• seems to be a reasonable 

choice, among the three alternative criteria considered, for large samples at all mean and random 
variance levels of interest. It is also quite easy to compute. For the two NB regression truck 
accident models in table 7, the R2. values are both about 0.74. 

More systematic simulation studies than those reported in this chapter should be planned 
and carried out in the future. The study should include situations where covariates are not 
normally distributed. Also, simulation studies could allow different degrees of correlation 
among simulated covariates. Finally, sampling property of these three alternative criteria should 
be carefully examined under medium and small samples. 

One final note for this chapter is that, throughout the simulation study, the uncertainties 
or measurement errors of the covariates have been ignored. In practice, important covariates 
such as AADT are subjected to both sampling and nonsampling errors. 
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6. ROADSIDE ENCROACHMENT AND RUN-OFF-THE-ROAD ACCIDENTS 

The third objective ofthis study was to suggest a model that is appropriate for the 
prediction of run-off-the-road accidents (RORA) and to discuss the merits and shortcomings of 
the model as it applies to the prediction of RORA and vehicle roadside encroachments which 
may lead to RORA. This chapter provides a summary of the research results and discusses key 
findings. Because of the limited resources available for this study, the research reported in this 
chapter is again exploratory and illustrative in nature. 

The first section of this chapter gives a review of two approaches that have traditionally 
been used in previous studies to develop the relationship between roadside accident frequency 
and roadside hazards, such as embankments, utility poles, trees, luminaries, guardrail, median 
barriers, traffic sign posts, mailboxes, culverts, bridge piers, etc. Using the model development 
principles described and simulation exjperiences learned in earlier chapters, an accident 
prediction model was developed using single vehicle (SV) RORA and roadway data (including 
mainline and roadside data) for rural two-lane undivided road and is presented in the second 
section. The third section provides estimates of roadside encroachment frequency using the 
accident prediction model presented in the second section. The last section concludes the 
chapter by offering some recommendations to enhance the RORA prediction model presented in 
the second section and for future research in roadside safety. 

In the following discussion, a roadside encroachment is said to occur when an errant 
vehicle crosses the outside edges of the travelway and encroaches on the shoulder, including both 
inside and outside shoulders. Thus, for a two-lane undivided road that has no inside shoulder, 
the total number of roadside encroachments includes departures of vehicles from the near-side 
and far-side edges of the travelway in both directions. A lane encroachment, on the other hand, 
describes an errant vehicle that travels onto an adjacent lane or shoulder. Thus, for a two-lane 
undivided road with no inside shoulder, a lane encroachment on an adjacent shoulder is 
considered a roadside encroachment (which will be called near-side or right-side roadside 
encroachment). However, a lane encroachment onto an adjacent lane may or may not lead to a 
roadside encroachment, depending on the lateral distance the vehicle travels before regaining 
control by the driver. Such a lane encroachment will be considered a roadside encroachment 
only if the errant vehicle crosses the entire width of the adjacent lane and encroaches on the far
side edge of the travel way (which will be called far-side or left-side roadside encroachment). 

It is important to note that roadside or lane encroachments refer only to unintentional 
encroachments. In other words, the intentional encroachments as a result of vehicles being 
intentionally driven outside of the travel lane, e.g., on adjacent lane (in the same or opposite 
direction), shoulders, and traversable medians, are not counted as encroachments. 

ACCIDENT-BASED AND ENCROACHMENT-BASED APPROACHES 

Models used in previous studies to describe the relationship between roadside accident 
frequency and roadside hazards have traditionally been categorized either as an accident-based 
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approach or encroachment-based approach. The first approach uses accident prediction models 
such as those presented in chapter 2. The second approach uses a series of conditional 
probabilities to describe the process of an encroaching vehicle that reaches a certain lateral 
displacement from the travelway and results in a collision with a roadside hazard. A good 
review of these two approaches can be found in a recent study by Daily et al. [1994] for FHW A. 
Since accident-based prediction models have been described in some detail in earlier chapters, 
this section will focus on describing encroachment-based models and their relationships with 
accident-based models. The strengths and weaknesses of each approach will be discussed. 

Encroachment-Based Approaches 

The main purpose of the roadside encroachment model is to estimate the annual number 
of RORA by severity level, e.g., fatal, injury, and PDQ accidents. The basic concept involved is 
that the consequences of an errant vehicle leaving the roadway depend not only on the 
encroachment speed and driver's reaction (e.g., steering and braking) but also on the roadside 
design. For example, at a site with good roadside design, a roadside encroachment may result in 
no injury or property damage; while the same encroachment at a location with poor roadside 
design could result in a severe accident. 

Over the years, roadside encroachment models have been developed for predicting 
roadside accident frequency, e.g., the National Cooperative Highway Research Program 
(NCHRP) Report 77 [l 969], NCHRP Report 148 [l 974], the American Association of State 
Highway and Transportation Officials' (AASHTO) Roadside Design Guide [1988], and the 
appendix F of the Transportation Research Board's Special Report 214 (SR2 l 4) [1987]. The 
roadside safety model included in the AASHTO Roadside Design Guide, which was based on 
NCHRP Reports 77 and 148, is known as the ROADSIDE model. The model has been coded as 
a microcomputer program that can be used to compare roadside accident rates by accident 
severity type for different roadside designs. By far, the most sophisticated encroachment model 
that has been introduced is the one presented in the TRB SR214. The ROADSIDE model can be 
considered as a simpler version of the SR2 l 4 model. 

To illustrate the concept behind an encroachment-based model, SR214 model will be 
used in the following discussion. For a particular type ofroadside hazard (e.g., utility poles), a 
basic roadside encroachment model of a road section with~ mile (or~ x 1.6 km) in length can be 
conceptually represented by the following equation: 

µ,• V x P(Ln Encro) x ex P(In Impact E,rve/ope ILn Encro) xP( Collide with Hazard lfn Impact E,rve/ope ) 

x P(RORA I Collide with Hazard )x P(RORA ,',RORA) 
(46) 

where 
= 

v. 

expected number of RORA involving a specific roadside hazard per year 
with severity level of s; 

number of vehicles per year passing the road section (=365 xAADT); 
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P(Ln Encro) = 

VxP(Ln Encro) 

probability of having a lane encroachment by a vehicle that travels 
l mi or l km of such road (assuming that the probability is the 
same for vehicles traveling in both directions); (Note that it is also 
assumed here that the probability of having more than one lane 
encroachment by a vehicle is zero); 

= expected number of lane encroachments per mi ( or per km) per year in 
both directions; 

= length of the road section (in mi or km); 

VxP(Ln Encro) xQ = expected number of lane encroachments on the road section per 
year in both directions; 

P(In Impact EnvelopejLn Encro) 
= conditional probability that, given a lane encroachment, its location is 

such that an impact with the hazard is possible; 

P(Collide with Hazard!In Impact Envelope) 
= conditional probability that, given an encroachment in potential impact 

envelope, a collision between vehicle and hazard will occur; 

P(RORA[Collide with Hazard) 
= conditional probability that, given a collision, its severity will be so great 

as to result in a RORA; and 

P(RORA,[RORA) = conditional probability that, given a RORA, an accident of severity 
level of s will occur. 

In principle, Eq. ( 46) can be developed for each type of roadside hazard and then summed over 
all types ofroadside hazards along the road section to estimate the total number of RORA by 
severity type for the road section. 

Each conditional probability in Eq. ( 46) is dependent on a number of factors. Table 19 
gives a list of potential factors that may need to be considered when developing roadside 
encroachment models. For example, it is expected that (1) VxP(Ln Encro) is dependent on 
mainline traffic and geometric design characteristics, such as AADT, number of lanes, lane 
width, horizontal curvature, and vertical grade; (2) P(In Impact EnvelopelLn Encro) is a 
function of the size, shape, and density of the roadside hazard considered, and the width and 
encroachment angle of the encroaching vehicle; (3) P(Collide with Hazardlin Impact Envelope) 
is a function of the lateral distance of the encroaching vehicle, which is associated with factors 
such as encroachment speed, friction between the vehicle tires and the surface, and driver's 
reaction (e.g., steering and braking); and (4) P(RORAjCollide with Hazard) xP(RORA,IRORA) is 
a function of many factors, including impact conditions (i.e., impact speed, impact angle, and 
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Table 19. Potential factors that may affect the conditional probabilities of the roadside 
encroachment model in Eq. (46) for two-lane undivided roads. 

Conditional Potential Factors, X Remarks 
Probability 

P [Ln Encro I XJ Traffic Density (e.g., AADT/Lane), Lane 1. Mainly associated with mainline 
Width, Horizontal Curvature, and Vertical traffic and geometric design 
Grade. characteristics. 

2. Other factors: shoulder width and 
types ( affecting drivers' attentiveness), 
car-truck mix, traffic signs (i.e., divers' 
behavior in response to the presence or 
absence of different traffic signs). 

P[Rdside Encro IX] Sarne As Above. For left-side encroachments, 
encroachment angle and speed are 
relevant. 

P(In Impact Size and Shape (or effective width and 1. Strictly speaking, encroachment 
EnvelopelLn Encro, X) length) of the Hazard, Density of the angle and speed could also be a 

Hazard, Width of the Vehicle, function of traffic density, horizontal 
Encroachment Angle. curvature, vertical grade, etc. 

2. When calculating the effective 
impact envelope, one needs to consider 
two possible situations: (a) impact 
envelopes of separate objects may 
overlap; and (b) the object of interest 
may be behind other objects, which 
can be breakaway or nonbreakaway 
objects. 

P(Collide with Hazard I Lateral Offset of the Hazard, Roadside Traditionally, the path of the 
In Impact Envelope, X) Slope, Encroachment Speed, Traveled Path, encroaching vehicle is assumed to be 

Traffic Density (for left-side straight which is a bold assumption 
encroachments), Type and Width of that ignores drivers' reaction (e.g., 
Shoulder (paved, stabilized, presence of steering and braking). 
rumble strips), Friction between Tires and 
Surface (weather). 

P(RORAICollide with Impact Speed, Angle, and Vehicle Driver and Other Occupants Ages, 
Hazard, X) xP(RORA, I Orientation, Size and Weight of the Errant Location of the Accident (e.g., rural vs. 
RORA,X) Vehicle. urban), Accident Reporting Threshold 

(varies by State). 

P(Reported RORA, I Driver's Demographic and Socioeconomic Not all accidents are repo.rted; 
RORAPX) Conditions, Driver's Previous Accident especially minor injury and PDQ 

Record, Location of Accidents, Single- accidents. 
Vehicle or Multiple-Vehicle Accidents 
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vehicle orientation), the size and weight of the errant vehicle, and the feature of the impacted 
roadside hazard (e.g., breakaway vs. nonbreakaway roadside devices). 

Not all accidents are reported, especially minor injury and PDO accidents. To model the 
reported RORA, Eq. (46) can be modified by multiplyingµ. with P(Reported RORA,I RORAJ, 
the reporting probability of an RORA with a severity level of s. This reporting probability is 
expected to be a function of a couple of factors, including the driver's demographic and 
socioeconomic characteristics as well as the driver's previous accident record. 

In appendix F of SR2 l 4, utility pole accidents of all severity levels for two-lane 
undivided roads were used as an example, and the reported encroachment model can be outlined 
as follows: 

(1) VxP(Ln Encro) = a(AADTl, where AADT is the annual two-directional average daily 
traffic volume, and a, bare model parameters. Essentially, the total number of lane 
encroachments per 1 mi or 1.6 km (at both sides of the road and in both directions) is 
assumed to be related only to traffic volume. The equation can also be reexpressed as 
P(Ln Encro) = a(AADTl IV= a(AADT/1(365 xAADT) = a(AADT/·1/365. Thus, one can 
say that the probability of lane encroachments per vehicle per mi or 1.6 km, P(Ln Encro), 
is conditional onAADT, which can be symbolized as P(Ln EncrolAADT). This 
conditional probability is likely to be oversimplified. As indicated earlier, P(Ln Encro) 
is expected to be conditional on other variables, such as lane width, horizontal curvature, 
and vertical grade. 

The relationship between the expected annual number of roadside encroachments and the 
expected annual number of lane encroachments is as follows: First, let the expected 
annual number of roadside encroachments per mile be mathematically expressed as 
VxP(Rdside Encro) , where P(Rdside Encro) is the probability of having a roadside 
encroachment by a vehicle that travels 1 mi or 1 km of such road (assuming that the 
probability is the same for vehicles traveling in both directions). Second, using the 
assumption that, for an errant vehicle, the lane encroachment is equally likely to occur on 
the left and right sides of the lane, the relationship can be reexpressed as VxP(Rdside 
Encro) = VxP(Ln Encro) x0.5 x{J +exp(dxLW)} = a(AADTl x0.5 x[J +exp(dxLW)} = 

0.5xa(AADT)b + 0.5 xa(AADT)bexp(dxLW), where LW is lane width, and a, b, dare 
model parameters. The constant 0.5 is used because of the assumption that lane 
encroachment is equally likely to occur on the left and right sides of the lane. 
Essentially, the first term (i.e., 0.5 xa(AADTl) represents the total number of near-side 
roadside encroachments per mile per year, while the second term (i.e., 
0. 5 xa(AADT)bexp(dxLW) ) represents the total number of far-side roadside 
encroachment per mile per year. Note that the exponential function exp(dxLW) 
represents the probability of a far-side encroaching vehicle that, without colliding with 
vehicles traveling in the opposite direction, will cross the entire adjacent lane (with a lane 
width of LW) before regaining control; the parameter dis less than zero which indicates 
that the probability of far-side encroachments is reduced exponentially as LW increases. 
Strictly speaking, the chance of not colliding with vehicles traveling in the opposite 

97 



direction is a function of AADT, encroachment angle, encroachment speed, etc., and 
therefore the parameter d does not have to be a constant. 

(2) P(In Impact EnvelopeJLn Encro) xP(Collide with HazardJin Impact Envelope) = 0.5 x ~ 

[c, x exp(dxLE,) + c1 x exp(dxLE1)], where LE,1 is the lateral offset of the jth utility 
pole from the edge of the traveled lane of a right-side or near-side encroaching vehicle; 
similarly, LEIJ is the lateral offset ofthejth utility pole from the edge of the traveled lane 
of a left-side or far-side encroaching vehicle; the summation is taken over all utility poles 
on both sides of the road; the constant 0.5 indicates that, for an errant vehicle, the lane 
encroachment can occur only on one side of the lane; and c,, c1, and dare model 
parameters. Essentially, exp(dxLE,) represents the probability of a right-side 
encroaching vehicle that, in the absence of roadside obstacles, will leave the traveled lane 
by a distance of greater than LE,1 before regaining control. Similarly, exp(dxLE11) 

represents the probability of a left-side encroaching vehicle that, in the absence of 
roadside obstacles and without colliding with the vehicles traveling in the opposite 
direction, will leave the traveled lane by a distance of greater than LE,1 before regaining 
control. Strictly speaking, the parameter d does not have to be the same for left- and 
right-side encroachments. 

The parameters c, and Ci, respectively, represent the portion of the road section (as a 
percentage of the section length) along the roadway within which a right-side and a left
side encroachment, if continued sufficiently far, will result in an impact with the utility 
pole. These portions of road section are typically called impact envelopes. By assuming 
that the path of the encroaching vehicle is straight, parameters c, and c1 are associated 
with the width of the encroaching vehicle, encroachment angle, and the length (parallel to 
the roadway) and width (perpendicular to the roadway) of the utility pole as follows: 

C = r 

c, = 

PoleLength, [ VehWidthxcsc(cl>,)] • [PoleWidthxcot(cl>,)] 

e X 5280 
PoleLength• [ VehWidthxcsc( cl>,)]+ [ Pole Widthxcot( cl>,)] 

e X 5280 

(47) 

where Polelength and Pole Width are respectively the length and width of the utility pole 
in ft; cl>, and cj>1 are respectively the right-side and left-side roadside encroachment angles. 
In SR214, the parameters c, and c1 are estimated using assumptions and limited empirical 
data as follows: (a) each utility pole has a square cross section with 8-in (20.32-cm) 
sides; (b) the encroachment angle is taken to be 6.1 degrees for near-side departures and 
11.5 degrees for far-side departures; and (c) the width of the encroaching vehicle is 6-ft 
(1.83m). An additional assumption used (but not indicated) in the study was that the 
distance between utility poles are far away from one another so that the impact envelopes 
of utility poles do not overlap. 

98 



Note that the actual calculations carried out in the study were somewhat more 
sophisticated than what is described above. Specifically, for each utility pole the 
potential impact envelope was divided into impact zones and each impact zone was 
further subdivided into 1-ft (0.3048 m) strips. This division allows more accurate 
estimates of the lateral encroachment distances LE,1and LEu. Incidentally, because the 
dimension of utility poles is quite small, LEu is approximately equal to LE, 1 + L W, 
where L W is the lane width. The readers are referred to the original report for more 
detailed description. 

This conditional probability is perhaps one of the most salient features of the roadside 
encroachment model. It touches several key factors of the RORA problem, including 
geometric factors, vehicle factors, driver behavior factors, and their interactions. It is in 
part because of this feature that SR214 suggested that "A primary advantage of the 
roadside encroachment model over the regression type model ... is its potential 
applicability to hazards other than utility poles." Note that, as will be discussed later, this 
statement is not true in this author's view. 

There are several assumptions used in SR2 l 4 that require further validation or 
refinement: (1) the assumption that the path of the encroaching vehicle is straight 
completely ignores driver's reaction, e.g., steering and braking; (2) the encroachment 
angles of 6.1 degrees for right-side departures and 11.5 degrees for left-side departures 
require further validation; and (3) the assumption that parameter dis constant and is the 
same for left- and right-side encroachments can be refined. 

(3) P(RORAICollide with Hazard) xP(Reported RORAIRORA)= ij, =0.9. That is, the model 
uses an assumption that there is a 90-percent probability that when a vehicle collides with 
a utility pole it will result in a reported RORA ( of any severity level). As indicated 
earlier, this probability is a function of many factors, including impact conditions (i.e., 
impact speed, angle, and vehicle orientation), the size and weight of the errant vehicle, 
and the feature of the impacted roadside hazard (e.g., material and shape). The constant 
probability is obviously a crude assumption. 

In sum, for a road section withe mile (ore x 1.6 km) in length, the final encroachment model used 
in SR214 has the following form:µ= a(AADT)6xex0.5x21 [c,xexp(dxLE,1 ) + c1xexp(dxLE11 )] 

x0.9, in which the unknown parameters are a, b, and d. Other parameters such as c,, c,, and ljr 
were estimated based on engineering judgment and limited empirical data as discussed earlier. 
The uncertainty of these estimates could not be quantified. Of course, the encroachment model 
can be formulated in a much more complicated form by using fewer assumptions. But, it will 
require the collection of a lot more variables and detailed data. 

The basic idea of the encroachment modeling is to collect encroachment frequency data, 
lateral encroachment distance, encroachment angle and speed, etc. to estimate the parameters 
associated with each conditional probability in the encroachment model. In practice, these data 
are very difficult and expensive to collect. In SR214, an attempt was made to validate 
encroachment frequency and rate using reported accident data. This was accomplished by 
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estimating parameters a, b, and d ( < 0) using the utility pole accident data of Zegeer and Parker 
[1985]. The data included over 2,500 mi (4,025 km) of rural and urban roads from four States. 
An ad hoc OLS procedure was used for parameter estimation after log-transformations were 
taken on both side of the equation. In addition to the statistical limitation of using the lognormal 
distributional assumption in accident prediction modeling that was discussed in chapter 2, the 
procedure overlooked the need for an adjustment factor as presented in Eq. (8). Furthermore, no 
attempt was made in SR2 l 4 to assess the quality of the estimated parameters and the goodness
of-fit of the overall model. 

The estimated parameter values for a, b, and din SR214 were, respectively, 0.07285, 
0.5935, and -0.08224. This model implies that the relationship between roadside encroachment 
frequency and AADT for a two-lane undivided road with 12-ft (3.66-m) lane width is as follows: 
roadside encroachment frequency per mile per year== 0. 07285(AADT}°-5935 x0.5 x [I + exp( 
-0. 08224 xJ 2)]. For AADT's of 1,000, 2,000, 5,000, and I 0,000 vehicles, the estimated 
roadside encroachment frequencies are, respectively, 3.02, 4.55, 7.84, and 11.83 encroachments 
per mi per year. As a consequence of overlooking the adjustment factor discussed above, these 
estimates are higher than they should be. As will be seen later, these estimates are also found to 
be considerably higher than the observations made by Hutchinson and Kennedy [1966] and 
Cooper (1980]. 

Relationship with Accident Prediction Models 

Fundamentally, the principles behind the roadside encroachment model is consistent with 
the accident prediction model. Let's recall the five major tasks that are required to develop 
accident prediction models (which was presented in chapter 2): 

Task 1. 

Task 2. 

Task 3. 

Task 4. 

Task 5. 

Find a good probability (mass) function to describe the random variation of 
accident frequency. 
Determine an appropriate functional form and parameterization for the mean 
function which describes the effect of key variables on accident frequency. 
Select the variables that have statistically significant effects on accident frequency 
for inclusion in the mean function. 
Estimate the regression parameters in the mean function and obtain good 
statistical inferences for the estimated parameters based on available data. 
Assess the quality of the model, judge whether the developed model makes good 
engineering sense, decide whether the developed model meets the planning and 
design requirements, and identify cost-effective ways to improve the model. 

The important feature of the encroachment model has been on task 2, i.e., on determining the 
appropriate functional form and parameterization for the mean function. Specifically, the 
encroachment model in Eq. (46) deals mainly with the mean function described in earlier 
chapters. That is, instead of the regular exponential mean function that is commonly used in the 
Poisson and NB regression based accident prediction models, the mean function form in the 
encroachment model is developed on the basis of geometry, vehicle dynamics, and driver 
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behavior, in conjunction with engineering judgment. It should be noted that, as indicated in 
chapter 2, exercising engineering judgment to formulate the mean function is in fact highly 
recommended in accident prediction modeling. In addition, it can be shown that the 
encroachment model described in SR2 l 4 is consistent with the exponential mean function that 
has been used in the Poisson and NB regression models: 

µ 

= 

a(AADT/ XQ x0.5 x~[c,xexp(dxLE,1)+c1xexp(dxLE1)Jx0.9 

(365xAADT XQ)x{(a/365) x(AADT/·1 x0.5x~ [c,xexp(dxLE,1 ) + 
c1xexp(dxLE1)} x 0.9) 

vxexp{/og(a/365)+(b-1) x[og(AADT) +log(0.5) +log(~ [c,xexp(dxLE,1) 
+c,xexp(dxLE,1)])+/og(0.9)}, 

where vis the exposure measure equal to 365 xAADT xq_ As discussed in chapter 2, this 
exponential functional form is essentially multiplicative (which implies interactive effects). 

It is formally straightforward to use the above mean function for the accident prediction 
models described in chapter 2. One can in fact estimate not only parameters a, b, d as in SR214, 
but also right-side and left-side encroachment angles (i.e., <I>, and ¢,1 which are imbedded in 
parameters c, and c1) using the usual accident prediction model building procedure. (Note that 
additional work is needed to develop statistical inferences for the estimated parameters since the 
mean function is not in the exact exponential form presented in chapter 2. But the work will be 
relatively straightforward.) In addition, this simple mean function can easily be extended to 
include, when available, lane width, horizontal curvature, and vertical grade as determinants of 
roadside encroachment frequency. 

It appears that, at the current stage of the development, both approaches suffer from three 
common criticisms: (1) potentially serious underreporting of minor injury and PDO accidents; 
(2) too data intensive; and (3) questionable model transferability from one location to another. 
In addition to these criticisms, there are a number of unanswered questions regarding the 
encroachment-based approach, e.g., the validity of existing encroachment data, including the 
inability to distinguish intentional from unintentional encroachments [Mak and Sicking, 1992; 
Daily et al., 1994]. 

Although the encroachment-based approach has been criticized as having a lack of sound 
empirical basis, being unrealistically data intensive, and full of unvalidated assumptions. This 
approach, however, in this author's view is one way of obtaining a solid and scientific 
understanding of the nature of RORA events and of devising effective countermeasures to reduce 
these events. Work in this area using a combination of traffic flow theory, geometry, vehicle 
dynamics, probability theory, and driver behavior theory will eventually lead to a better 
determination of the form and parameterization of the mean function in accident prediction 
models. Using economic theory as an analogy, accident prediction models are like 
macroeconomic models, while the encroachment models are like microeconomic models. The 
interrelated and complementary nature of these two approaches indicates the need for both 
approaches in studying accident-flow-roadside design relationships. 
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To illustrate the complementary nature of these two approaches, it will be shown in the 
next two sections how a RORA prediction model can be developed for estimating roadside 
encroachment frequency and deriving the probability distribution of the lateral extent of 
encroachment when encroachment occurs. 

RUN-OFF-THE-ROAD ACCIDENT PREDICTION MODEL 

RORA and roadway data for rural two-lane undivided roads from a roadway cross
section design data base [Hummer, 1986], administered by FHW A and TRB, were used to 
develop an accident prediction model. One of the important feature of this particular data base is 
that it contains a rather detailed description of key design elements of various roadside obstacles. 
The roadway data used in this study include traffic and geometric design data of 596 road 
sections in three States: Alabama, Michigan, and Washington. The total length of these sections 
is 1,788 mi (2,861 km). About 5 years of SV RORA data from 1980 to 1984 were available for 
analysis. During the 5-year period, there were 4,632 SV reported to be involved in RORA on 
these road sections, regardless of vehicle and accident severity type. With the total vehicle miles 
estimated to be 7,639 million vehicle mi (14,514 million vehicle km), the overall SV RORA rate 
was 0.61 SV RORA per million vehicle mi (0.38 SV RORA per million vehicle km). Note that 
Alabama has incomplete accident data. For example, accidents occurred in icy or snowy 
conditions were not recorded and some injury accidents were not available [Hummer, 1986]. 

One important note for this data set is that none of the 596 sections contains continuous 
roadside objects such as a guardrail or a group of trees. The same data set has been used in 
Zegeer et al. [1987] to evaluate the effects of sideslope on the rate of SV RORA. Detailed 
descriptions and statistics of these road sections can be found in Hummer [1986] and Zegeer et 
al. [1987]. 

In addition to vehicle miles traveled, the covariates considered for individual road 
sections are presented in table 20. They include (1) dummy variables for Michigan and 
Washington to capture the overall difference in SV RORA rate among States, because of 
differences in omitted variables such as weather, socioeconomic and geographic variables, 
accident reporting threshold, and incomplete accident records described above; (2) AADT per 
lane, used as a surrogate measure for traffic density; (3) lane width; (4) median clear roadside 
recovery distance, measured from the right edge of the shoulder; (5) paved shoulder width; (6) 
earth, grass, gravel, or stabilized shoulder width; (7) median sideslope; (8) terrain type; (9) 
posted speed limit; (10) number of intersections per mile; ( 11) number of driveways per mile; 
and (12) number of bridges per mile. Many of these covariates were also considered by Zegeer 
et al. [ 1987]. Horizontal curvature and vertical grade data were not used in this exercise because 
147 sections (about 25 percent) were found to have no curvature data and 341 sections (about 57 
percent) did not have grade information. To some extent, terrain type is used as a surrogate 
measures for horizontal curvature and vertical grade; 

The NB regression model, as described in chapter 2, was selected over the Poisson 
regression models because the estimated overdispersion parameters were found to be statistically 
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significant for all developed models. For illustration, four of the estimated NB regression 
models are presented in table 20, which shows the estimated parameters as well as their 
associated standard deviations and t-statistics. All covariates in all four models have the 
expected effects. Based on the AIC criterion, Model 3 was the final selected model. Using the 
goodness-of-fit measure R.2 as presented in chapter 5, the final selected model has a R.2value of 
0.62. That is, about 62 percent of the explainable variance were explained by the covariates 
included in this model. It is expected that a higher R.2 value could be achieved if horizontal 
curvature and vertical grade were available. 

The posted speed limit was not found to be significant because of the lack of variation; 
530 out of the 596 sections had a posted speed limit of 55 mi/h. Although the number of 
intersections per mile had the expected effect, it was not found to be statistically significant (at a 
20 percent a level) and was removed from the final model. 

Major findings from Model 3 are presented as follows: 

• If all considered variables have the same values, Michigan has the highest SV RORA rate 
and Alabama has the lowest rate. Michigan's rate is about 20 percent higher than 
Washington because of the difference in weather and socioeconomic conditions; while 
Alabama is about 34 percent lower than Washington mainly because of the incomplete 
Alabama accident data and difference in weather and other factors. 

• AADT per lane shows a negative effect. One plausible explanation is that, all else being 
equal, higher vehicle density results in higher multiple-vehicle accident rate and lower 
SV accident rate. 

• All else being equal, increasing lane width is expected to reduce SV RORA rate. 
Figure 13 gives an illustration of the SV RORA rates for various lane widths and 
side slopes. In addition, this figure shows the same rates derived by Zegeer et al. [1987]. 
It can be seen that the rates from this study are much higher than those from Zegeer et 
al.'s study. The main reason is that there is a fundamental problem in the method used by 
Zegeer et al. to compute the mean rate. This problem is pertaining to the use of 
lognormal distributional assumption and has been pointed out in Miaou and Lum [1993]. 

• The effect of paved shoulder width was not found to be significantly different from the · 
effect of stabilized shoulder width. All else being equal, increasing shoulder width by 1 
ft (0.3048 m) is expected to reduce SV RORA rate by about 9 percent. 

• Steeper sideslope is associated with a higher SV RORA rate. Figure 14 shows the 
relative rates for various sideslope ratios when compared to the rate of a sideslope of 7: 1. 
This figure also shows that the same relative rates derived from Zegeer et al's model. It 
can be seen that this study shows lower relative rates than those from Zegeer et al's study. 
The t-statistic of the estimated parameter in table 20 shows that the sideslope was not as 
well determined as other variables. One possible reason is that for each road section, the 
median (i.e., 50th percentile) sideslope measurement was used as the most representative 
sideslope, but the actual sideslope may vary considerably within a given section [Zegeer 
et al. [1987]. 

• As expected, all else being the same, higher numbers of driveways and bridges per mile 
result in higher SV RORA rates. 
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Table 20. Estimated regression coefficients of some tested negative binomial regression models and associated 
statistics for single-vehicle run-off-the-road accidents. 

Model Parameter 

fl, 
Dummy intercept (=I) 

P2 
Dummy variable for Michigan (!=Michigan; 
O=otherwise) 

fl, 
Dummy variable for Washington 
(]=Washington; O=otherwise) 

fl. 
AADT per lane (in IO') 

fl, 
Lane width (in ft) 

p6 
Median clear roadside recovery distance (in ft) 

fl, 
Paved shoulder width (in ft) 

fls 
Earth, grass, gravel, or stabilized shoulder width 
(in ft) 

fl, 
Median sideslope (e.g., 3: I and 7: I slopes are 
recorded as 1/3=0.33 & 1/7=0.14, respectively.) 

fl,o 
Terrain type (O=flat; l=rnountainous+rolling) 

Pu 
Posted speed limit (in mi/h) 

fl12 
Number of intersections per mile 

ll ll 
Number of driveways per mile 

fl .. 
Number of bridges per mile 

Dispersion parameter (11) 

L(o;,p) (=loglikelihood function) 

AlC value 

Expected vs. observed total number of 
accidents 

Model I 

0.85487 
(±0.71;1.20) 

0.6170 
(±0.12;4.97) 

0.4429 
(±0.15;2.98) 

-0.1773 
(±0,04;-4.46) 

-0.1462 
(±0.04;-3.51) 

-0.01525 
(±0.007;-2.162) 

-0.0921 
(±0.016;-5,685) 

-0,0894 
(±0,015;-6.00) 

0.6842 
(±0.45;1.50) 

0.2973 
(±0,09;3.37) 

0.0070 
(±0.01;0,63) 

0.0409 
(±0.034;1.22) 

0.0102 
(±0.006;!.78) 

0.2050 
(±0.09;2.16) 

0.3992 
(±0,037;10.9) 

-1645.8 

3321.5 

4,719.9 
4,632.0 

Model 4 

, .2002, · · . " lioo..::i 1.39669 
(±0.45;3,09) (±0.46;2.61) · {#A6;i.62} • 

0.601s ·, ' \ 0:6016. . o.5744 
(±0.12;4.91) " {:#IJ2;492):' (±0.12;4,66) 

0.4218 ' 0.421B. ,;' 0.4799 
(±0.14;3. IO) '•' (±O'.f3;3.i6)' (±0.12;3.95) 

-0.1787 , ·, ,, -0.1783 . -0.1731 
(±0.04;-4.52) ·,. }:l0,04;-{57): · (±0.04;-4,40) 

-0.1433 
(±0.04;-3.49) 

-0.01472 
(±0.007;-2.11) 

-0.0893 
(±0.014;-6.47) 

0.6920 
(±0.45;1.53) 

0.2937 
(±0.09;3.34) 

' --0,01375 : : 
. (:0.007;~1:97) ' 

j • ! ~ 

•

1 

(±0111:~~Bf, 

' . ' 

· 0.6920 
(±0.45;1.54) 

0;2939 : , 
(:l:0.09;3,3'S~ · ' 

-0,1380 
(±0.04;-3.35) 

-0.01758 
(±0.007;-2.59) 

-0,0938 
(±0.014;-6,88) 

0.3123 
(±0,09;3.54) 

0.0405 I ' 

(±0.034;1.21) 

0.0102 
(±0.006; I. 77) 

0.2016 
(±0095;2.13) 

0.3987 
(±0,037;10.9) 

-1646.0 

3317.9 

4,710 7 
4,632.0 

. . .0,0129 , 0.0126 
-(±0.006:2.33)., c±o.006;2.21J 

:> i>.20i6 0.2138 
(±0,095;2:~3) (±0.095;2.25) 

: 
. 0,3983 · : 0.4065 
. (±0:036;11.0) : (±0.037;1 I.O) 

. 

'3317.S · 

4,709.0 
. 4,632.-0 

-1647,9 

3317.8 

4,713.1 
4,632.0 

Notes: (I) 596 rural two-lane undivided road sections; total length=l,788 mi; about 5 years of accident data (1980-1984). 
(2) Values in parentheses are asymptotic standard deviation and t-statistics of the coefficients above. 
(3) ----- indicates "not included in the model." 
(4) I mi= 1.61 km, I ft= 0.3048 m. 
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Figure 13. Illustration of single-vehicle run-off-the-road accident rates for various lane widths and sideslopes. 
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In the next section, Model 3 will be used to illustrate how an accident prediction model 
can be used to estimate roadside encroachment frequency and to derive the probability 
distribution of the lateral extent of encroachment when encroachment occurs. 

ESTIMATING ENCROACHMENT FREQUENCY WITH ACCIDENT PREDICTION 
MODELS 

The relationship between SV RORA probability and SV roadside encroachment 
probability for a vehicle traveling through a 1-mi or 1-km road section can be mathematically 
expressed as follow: 

where 

P(SV RORA\ Mainline, RdsideDesign) • P(RdsideEncro\ Mainline, RdsideDesign) x 
P(SVRORA I RdsideEncro, Mainline, RdsideDesign) 

Mainline = Mainline traffic and geometric design variables; 

Rdside Design = Rdside design variables; 

P(SV RORA\Mainline, Rdside Design) 

(48) 

= conditional probability of being involved in a SV RORA when a vehicle 
travels through a 1-mi or 1-km road section that has a given geometric 
design and traffic characteristics as described in Mainline and Rdside 
Design; (Note that it is assumed here that the probability of having more 
than one SV RORA by a vehicle is zero); 

P(Rdside EncrolMainline, Rdside Design) 
= conditional probability of having an SV roadside encroachment when a 

vehicle travels through a 1-mi or 1-km road section that has a given 
geometric design and traffic characteristics as described in Mainline and 
Rdside Design; (Note that it is assumed here that the probability of having 
more than one SV roadside encroachment by a vehicle is zero); 

P(SV RORA IRdside Encro, Mainline, Rdside Design) 
= conditional probability of being involved in an SV RORA when a vehicle 

travels on a 1-rni or 1-km road section that has a given geometric design 
and traffic characteristics as described in Mainline and Rdside Design and 
has encroached on the roadside. 

By assuming that Rdside Design has a very small and negligible effect on roadside encroachment 
probability, Eq. (48) can be rewritten as: 
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P(SV RORA I Mainline, Rdside Design)• P(Rdside Encrol Mainline) x (49) 
P (SV RORA I Rdside Encro, Mainline, Rdside Design) 

Now, let's picture a condition where there exists an extremely bad roadside design such 
that when a vehicle encroaches on the roadside at any point on the road section it is 100 percent 
sure that the vehicle will result in a RORA. For example, one can picture a road section which 
has no shoulders and a ditch with a 1: 1 sideslope ratio built right next to the traveled lane. Note 
that very dense point objects, such as trees and utility poles, alone the roadside would also be 
good examples. Of course, a road section with such a bad roadside design may not exist in the 
study area of interest. Under such a bad roadside design condition, P(SV RORA/Rdside Encro, 
Mainline, "extremely bad" Rdside Design)= l, and therefore Eq. (49) can be reexpressed as: 

P( SV RORA I Mainline, "extremely bad" Rdside Design). P(Rdside Encrol Mainline) (50) 

To estimate the expected annual number of RORA on a road section with~ miles, one can simply 
multiply Eq. (50) with (Vxi), where Vis the total number of vehicles traveling through the 
section per year (=365 xAADT). That is, 

P(SVRORAIMain/ine, "extremely bad" RdsideDesign) x V x e. P(RdsideEncrolMain/ine)x Vx e (51) 

In Eq. (51), the right hand side is the annual roadside encroachment frequency of interest, and the 
left hand side is the expected number of SV RORA per year, which can be estimated using a 
conventional accident prediction model such as the Model 3 presented in the last section. 

To estimate the roadside encroachment frequency using the Model 3, an extremely bad 
roadside design condition was created by setting shoulder width = 0, median clear roadside 
recovery distance = 0, and median sideslope = 1. (Note that sideslope ratio of 1: 1 is the 
maximum median sideslope observed in the sample sections.) Except Jane width and AADT, 
other variables were set equal to their average values. Also, because Alabama has incomplete 
accident data, only Michigan and Washington models are used. Figure 15 shows the estimated 
roadside encroachment frequencies per mile per year by various lane widths and AADT's using 
Eq. (51). The encroachment frequencies collected by Kennedy and Hutchinson [1966) and 
Cooper [1980), and the estimates given in SR214 are also presented in the figure for comparison. 

One important observation can be made from figure 15 is that the estimated 
encroachment frequencies are very compatible with the encroachment data collected by others. 
Several comments can be made about this particular approach of estimating roadside 
encroachment frequency: 

• One advantage of such an approach is that the encroachment frequency can be estimated 
for all kind of mainline design and traffic conditions. For example, if horizontal 
curvature and vertical grade were included in Model 3, the encroachment frequencies 
could be estimated for various horizontal curvatures and vertical grades as well. 
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Figure 15. Comparison of the derived roadside encroachment frequency from the accident 

prediction model developed in this study and observed frequencies from earlier studies. 
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To actually collect such detailed encroachment data will be very expensive and maybe 
impractical. 

• It has been suggested that "The encroachment frequency estimated in this manner can 
only be as accurate as the accident data used as input" [Daily et al. , 1994]. The 
suggestion is mainly related to the concern about the underreporting of minor accidents. 
This author would like to point out that this concern is not particularly serious for the 

· approach taken in this section. The reason is that under the so-called extremely bad 
. roadside design condition stated above, the resulting RORA is expected to be very severe 

and underreporting of such accidents is very unlikely. Therefore, provided a flexible 
mean function form is used in developing accident prediction model, the encroachment 
frequency estimated from such an approach is relatively unaffected by the underreporting 
of accidents. 

• Another advantage of such an approach is that the estimated encroachment frequency is 
relatively uncontaminated by intentional encroachments. Again, the reason is that 
intentional encroachments are not likely to occur under such a bad roadside design 
condition. 

It is important to point out that some degree of extrapolation is used in Eq. (51) because 
of the assumed extreme roadside conditions where shoulder width = 0, median clear roadside 
recovery distance = 0, and median sideslope =I. It is this author's judgment that the estimated 
encroachment frequency from Eq. (51) represents only potentially harmful and unintentional 
encroachments. In addition, the estimate is expected to be lower than what would actually 
happen on the roads, especially for those roads with wide shoulders where drivers tend to be 
more relaxed and harmless and unintentional roadside encroachments do occur quite often. 

Another possible use of such an approach is to estimate the probability of the lateral 
extent of encroachment when a roadside encroachment occurs. That is, given a roadside 
encroachment has occurred, the approach can be used to estimate the probability that the 
encroached vehicle, in the absence of roadside obstacles, will leave the traveled lane by at least a 
distance of, say, L. Conceptually, this estimate can be achieved by a simple extension of the 
approach described above. Specifically, it can be achieved by setting shoulder width= L, 
median clear roadside recovery distance = 0, and median sideslope = I. The other variables can 
be set in exactly the same way. Figure 16 shows a derived probability distribution of the lateral 
extent of encroachments using such approach. Since shoulder width is used to estimate the 
probability, the distribution is good for flat roadside condition (with no slopes). This estimated 
distribution can be seen to be quite consistent with AASHTO's distributions for roads with a 
design speed of 50-60 mi/h (80-96 km/h). On the other hand, it is very different from the 
distributions derived from Hutchinson and Kennedy's encroachment data. Note that the basis of 
AASHTO's distributions is not clear from its Roadside Design Guide [Daily et al., 1994). In 
addition, the estimation of a single distribution for a design speed has been controversial; it has 
been suggested that multiple distributions for different sideslope ratios are necessary. In theory, 
this distribution could be conditional on sideslope, shoulder type (e.g., paved vs. unpaved, 
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with or without rumble strips), density ofroadside hazards, traveled path, or even encroached 
angle (table 19). The readers are referred to Daily et al. [ 1994] for more discussion. 

The illustration above shows that the approach described in this section can be a viable 
approach to estimating encroachment frequency without actually collecting the encroachment 
data that can be very costly. Most importantly, it is straightforward using such an approach to 
estimating encroachment frequencies for various mainline traffic and design conditions, e.g., 
AADT, lane width, horizontal curvature, and vertical grade. The only premise is that a sound 
accident prediction model be developed. The better the accident prediction model, the better the 
estimate of roadside encroachment frequency can be expected. 

RECOMMENDATIONS FOR FUTURE RESEARCH 

The interrelated and complementary nature of the accident-based approach and 
encroachment-based approach suggests that both approaches are needed in studying 
accident-flow-roadside design relationships. It is our view that, given the current state of 
the art and funding situations, the emphasis of research on the encroachment-based 
approach should be more scientific-oriented, while the accident-based approach should be 
more application- or engineering-oriented. In other words, this author recommends that 
the current goal of encroachment-based approach should be on deepening the scientific 
understanding of the ROR process that leads to a roadside accident. Each conditional 
probability shown in table 19 will require a lot of theoretical research, data collection, 
parameter calibration, and validation. It would be naive to believe that by over
simplifying each.conditional probability and then multiplying them together would 
provide realistic estimates. On the other hand, the accident-based approach should not 
be limited to conventional Poisson and NB statistical regression models that have a 
restricted fonn of mean function. For the accident prediction model to be useful for 
design and safety engineers, the mean function must have sound engineering basis and 
interpretation. In this aspect, the accident-based approach can definitely benefit from the 
engineering-oriented thinking and formulation adopted by the encroachment-based 
approach. Of course, there are still a lot of room for improvement in the encroachment
based thinking. For example, driver behavior after an errant vehicle leaves the travel way 
is perhaps one of the missing links in the current encroachment-based model. 

• More research to explore the interrelationship between the accident-based approach and 
encroachment-based approach can help develop viable and cost-effective ways of 
quantifying roadside safety. The illustration demonstrated in the last two sections is a 
good example. Another example is the SR214 study on two-lane roads in which both 
right-side and left-side encroachment angles can be estimated using the usual accident 
prediction model building procedure without actually collecting them. In studying the 
interrelationship between these two approaches, one may find that the extension from 
two-lane undivided road sections to other multiple-lane road sections or intersections is 
not straightforward. 
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• Roadside encroachment frequency is expected to be highly dependent on the horizontal 
curvature of a road section. For the illustration shown earlier, there is a good chance that 
a more sophisticated statistical method can be used to develop the accident prediction 
model, which includes horizontal curvature as an explanatory variable and takes into 
account the 14 7 sections with missing curvature data. It is this author's judgment that it 
will be a worthwhile exercise. 

• There is a need to develop general roadside design safety indices to measure the relative 
risk of being involved in an accident under different roadside design conditions when an 
errant vehicle encroaches on the roadside. Same as most of the economic indices, these 
indices should have clear concepts and definitions and be objective and quantifiable. For 
roadway design and safety engineers to accept these indices in their practice, good 
engineering and statistical interpretations of these indices are essential. The clear zone 
concept, e.g., is a good starting point of conceptualizing these indices. The roadside 
hazard ratings developed and used in Hummer [1986] and Zegeer et al. [1987] are 
subjective and not quantifiable. However, these ratings are useful steppingstones for 
developing more useful indices in the future. 
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7. SUMMARY AND FUTURE RESEARCH 

In developing accidents-flow-roadway design models, the R2 goodness-of-fit measure has 
been used by traffic safety engineers and researchers for many years to (1) determine the quality 
and usability of a model; (2) select covariates (or explanatory variables) for inclusion in the 
model; (3) make a decision as to whether it would be worthwhile to collect additional covariates; 
and (4) compare the relative quality of models from different studies. 

The state of the development of accident prediction models was reviewed in chapter 2. In 
chapter 3, the pitfalls of using R2 to make these decisions and comparisons were demonstrated 
through simulation studies for commonly used accident prediction models, such as the Poisson 
and NB regression models. Because the accident prediction models are non-normal and its 
functional forms are typically nonlinear and multiplicative (or interactive) in nature, it was 
shown that R2 is not an appropriate measure to make any of the decisions and comparisons 
above. In addition, three properties were identified as essential and desirable for any alternative 
measures to appropriately evaluate the goodness-of-fit of accident prediction models. These 
properties are (1) [0,1] bound property; (2) proportional increase property; and (3) invariant with 
respect to the mean property. Basically, [O, 1] bound property says that one would like to have a 
value of zero if no covariate is included in the model and a value of 1 if all the necessary 
covariates are included. Proportional increase property says that if all covariates are independent 
and equally important, then when one selects and adds these covariates to the model one at a time 
the increase in value should be the same for each covariate regardless of their order of selection. 
Invariant with respect to the mean property says that the value of the criterion will not change by 
simply increasing or decreasing the value of the intercept term of the model. 

In chapter 4, the concept of a goodness-of-fit criterion called the AIC was introduced. 
The capability of AIC-based criteria and other criteria, such as scaled deviance and Pearson's X2 
statistics, to select the correct models were then evaluated. Again, the evaluation was carried out 
using simulations. Although the simulations conducted in this study were limited, several 
interesting results have been reported. The simulations indicated that the results of statisticians' 
experiments under the situation where the correct model is among a set of candidate models 
considered by the modeler are not appropriate for use in developing accident prediction models. 
A more appropriate situation that needs to be tested is the ability of the goodness-of-fit criteria to 
select the best model(s) when some of the relevant variables are omitted from all candidate 
models. In addition, an AIC-based criterion called CAICNB was recommended for use in 
variable selection when developing accident prediction models. It was further suggested that 
engineering judgment should be exercised at every step of the variable selection. Another 
suggestion was that instead of selecting the candidate model that has the lowest CAICNB value, 
one should also consider those candidate models that are compatible. For example, one should 
also look into those models that have CAICNB values not greater than 3 to 5 of the CAICNB value 
of the best model. 

Chapter 5 introduced three alternative goodness-of-fit measures which were developed 
based on the so-called Poisson concept. Their performances in terms of the three properties 
discussed above were evaluated again through simulations. Because oflimited resources, their 
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performance was evaluated under large samples only. Based on limited simulation results, one 
of the alternative criteria called R2

• was recommended for use to evaluate and compare the 
quality of accident prediction models if the sample size is large. 

The simulation studies in chapters 3 to 5 suggested several factors that make the 
evaluation of the goodness-of-fit of accident prediction models difficult: (1) highly skewed 
probability models; (2) nonlinear functional relationships; (3) very low overall means; and (4) 
omitted variables. It was recommended that more systematic simulation studies than those 
reported in this report should be planned and carried out in the future. 

Chapter 6 reviewed two approaches that have traditionally been used in previous 
studies to develop the relationship between roadside accident frequency and roadside hazards: 
accident-based approach and encroachment-based approach. The interrelated and 
complementary nature of the two approaches as they applied to the prediction of RORA and 
vehicle roadside encroachments were discussed. To illustrate the complementary nature of these 
two approaches, RORA and roadway data for rural two-lane undivided roads from an FHW A and 
TRB roadway cross-section design data base were used. Specifically, it was shown that a RORA 
prediction model could be developed for use to estimate roadside encroachment frequency and to 
derive the probability distribution of the lateral extent of encroachment. It was suggested that 
exploring the complementary nature of these two approaches could be a viable avenue to reduce 
data collection cost, and more research in this direction was recommended. 
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